Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Overview

Evaluating the Factual Consistency of Abstractive Text Summarization

Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher

Introduction

Currently used metrics for assessing summarization algorithms do not account for whether summaries are factually consistent with source documents. We propose a weakly-supervised, model-based approach for verifying factual consistency and identifying conflicts between source documents and a generated summary. Training data is generated by applying a series of rule-based transformations to the sentences of source documents. The factual consistency model is then trained jointly for three tasks:

  1. identify whether sentences remain factually consistent after transformation,
  2. extract a span in the source documents to support the consistency prediction,
  3. extract a span in the summary sentence that is inconsistent if one exists. Transferring this model to summaries generated by several state-of-the art models reveals that this highly scalable approach substantially outperforms previous models, including those trained with strong supervision using standard datasets for natural language inference and fact checking. Additionally, human evaluation shows that the auxiliary span extraction tasks provide useful assistance in the process of verifying factual consistency.

Paper link: https://arxiv.org/abs/1910.12840

Table of Contents

  1. Updates
  2. Citation
  3. License
  4. Usage
  5. Get Involved

Updates

1/27/2020

Updated manually annotated data files - fixed filepaths in misaligned examples.

Updated model checkpoint files - recomputed evaluation metrics for fixed examples.

Citation

@article{kryscinskiFactCC2019,
  author    = {Wojciech Kry{\'s}ci{\'n}ski and Bryan McCann and Caiming Xiong and Richard Socher},
  title     = {Evaluating the Factual Consistency of Abstractive Text Summarization},
  journal   = {arXiv preprint arXiv:1910.12840},
  year      = {2019},
}

License

The code is released under the BSD-3 License (see LICENSE.txt for details), but we also ask that users respect the following:

This software should not be used to promote or profit from violence, hate, and division, environmental destruction, abuse of human rights, or the destruction of people's physical and mental health.

Usage

Code repository uses Python 3. Prior to running any scripts please make sure to install required Python packages listed in the requirements.txt file.

Example call: pip3 install -r requirements.txt

Training and Evaluation Datasets

Generated training data can be found here.

Manually annotated validation and test data can be found here.

Both generated and manually annotated datasets require pairing with the original CNN/DailyMail articles.

To recreate the datasets follow the instructions:

  1. Download CNN Stories and Daily Mail Stories from https://cs.nyu.edu/~kcho/DMQA/
  2. Create a cnndm directory and unpack downloaded files into the directory
  3. Download and unpack FactCC data (do not rename directory)
  4. Run the pair_data.py script to pair the data with original articles

Example call:

python3 data_pairing/pair_data.py <dir-with-factcc-data> <dir-with-stories>

Generating Data

Synthetic training data can be generated using code available in the data_generation directory.

The data generation script expects the source documents input as one jsonl file, where each source document is embedded in a separate json object. The json object is required to contain an id key which stores an example id (uniqness is not required), and a text field that stores the text of the source document.

Certain transformations rely on NER tagging, thus for best results use source documents with original (proper) casing.

The following claim augmentations (transformations) are available:

  • backtranslation - Paraphrasing claim via backtranslation (requires Google Translate API key; costs apply)
  • pronoun_swap - Swapping a random pronoun in the claim
  • date_swap - Swapping random date/time found in the claim with one present in the source article
  • number_swap - Swapping random number found in the claim with one present in the source article
  • entity_swap - Swapping random entity name found in the claim with one present in the source article
  • negation - Negating meaning of the claim
  • noise - Injecting noise into the claim sentence

For a detailed description of available transformations please refer to Section 3.1 in the paper.

To authenticate with the Google Cloud API follow these instructions.

Example call:

python3 data_generation/create_data.py <source-data-file> [--augmentations list-of-augmentations]

Model Code

FactCC and FactCCX models can be trained or initialized from a checkpoint using code available in the modeling directory.

Quickstart training, fine-tuning, and evaluation scripts are shared in the scripts directory. Before use make sure to update *_PATH variables with appropriate, absolute paths.

To customize training or evaluation settings please refer to the flags in the run.py file.

To utilize Weights&Biases dashboards login to the service using the following command: wandb login <API KEY>.

Trained FactCC model checkpoint can be found here.

Trained FactCCX model checkpoint can be found here.

IMPORTANT: Due to data pre-processing, the first run of training or evaluation code on a large dataset can take up to a few hours before the actual procedure starts.

Running on other data

To run pretrained FactCC or FactCCX models on your data follow the instruction:

  1. Download pre-trained model checkpoint, linked above
  2. Prepare your data in jsonl format. Each example should be a separate json object with id, text, claim keys representing example id, source document, and claim sentence accordingly. Name file as data-dev.jsonl
  3. Update corresponding *-eval.sh script

Get Involved

Please create a GitHub issue if you have any questions, suggestions, requests or bug-reports. We welcome PRs!

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022