Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21)

Overview

NeurIPS 2021

License: MIT

Title: Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (paper)

Authors: Junho Kim*, Byung-Kwan Lee*, and Yong Man Ro (*: equally contributed)

Affiliation: School of Electric Engineering, Korea Advanced Institute of Science and Technology (KAIST)

Email: [email protected], [email protected], [email protected]


This is official PyTorch Implementation code for the paper of "Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck" published in NeurIPS 21. It provides novel method of decomposing robust and non-robust features in intermediate layer. Further, we understand the semantic information of distilled features, by directly visualizing robust and non-robust features in the feature representation space. Consequently, we reveal that both of the robust and non-robust features indeed have semantic information in terms of human-perception by themselves. For more detail, you can refer to our paper!

Alt text

Citation

If you find this work helpful, please cite it as:

@inproceedings{
kim2021distilling,
title={Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck},
author={Junho Kim and Byung-Kwan Lee and Yong Man Ro},
booktitle={Advances in Neural Information Processing Systems},
editor={A. Beygelzimer and Y. Dauphin and P. Liang and J. Wortman Vaughan},
year={2021},
url={https://openreview.net/forum?id=90M-91IZ0JC}
}

Datasets


Baseline Models


Adversarial Attacks (by torchattacks)

  • Fast Gradient Sign Method (FGSM)
  • Basic Iterative Method (BIM)
  • Projected Gradient Descent (PGD)
  • Carlini & Wagner (CW)
  • AutoAttack (AA)
  • Fast Adaptive Boundary (FAB)

This implementation details are described in loader/loader.py.

    # Gradient Clamping based Attack
    if args.attack == "fgsm":
        return torchattacks.FGSM(model=net, eps=args.eps)

    elif args.attack == "bim":
        return torchattacks.BIM(model=net, eps=args.eps, alpha=1/255)

    elif args.attack == "pgd":
        return torchattacks.PGD(model=net, eps=args.eps,
                                alpha=args.eps/args.steps*2.3, steps=args.steps, random_start=True)

    elif args.attack == "cw":
        return torchattacks.CW(model=net, c=0.1, lr=0.1, steps=200)

    elif args.attack == "auto":
        return torchattacks.APGD(model=net, eps=args.eps)

    elif args.attack == "fab":
        return torchattacks.FAB(model=net, eps=args.eps, n_classes=args.n_classes)

Included Packages (for Ours)

  • Informative Feature Package (model/IFP.py)
    • Distilling robust and non-robust features in intermediate layer by Information Bottleneck
  • Visualization of robust and non-robust features (visualization/inversion.py)
  • Non-Robust Feature (NRF) and Robust Feature (RF) Attack (model/IFP.py)
    • NRF : maximizing the magnitude of non-robust feature gradients
    • NRF2 : minimizing the magnitude of non-robust feature gradients
    • RF : maximizing the magnitude of robust feature gradients
    • RF2 : minimizing the magnitude of robust feature gradients

Baseline Methods

  • Plain (Plain Training)

    • Run train_plain.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='vgg', type=str, help='network name')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
  • AT (PGD Adversarial Training)

    • Run train_AT.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='vgg', type=str, help='network name')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--attack', default='pgd', type=str, help='attack type')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
  • TRADES (Recent defense method)

    • Run train_TRADES.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='wide', type=str, help='network name: vgg or wide')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--attack', default='pgd', type=str, help='attack type')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
  • MART (Recent defense method)

    • Run train_MART.py
      parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='wide', type=str, help='network name')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--epoch', default=60, type=int, help='epoch number')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--attack', default='pgd', type=str, help='attack type')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')

Testing Model Robustness

  • Mearsuring the robustness in baseline models trained with baseline methods
    • Run test.py

      parser.add_argument('--steps', default=10, type=int, help='adv. steps')
      parser.add_argument('--eps', default=0.03, type=float, help='max norm')
      parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
      parser.add_argument('--network', default='vgg', type=str, help='network name')
      parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
      parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
      parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
      parser.add_argument('--batch_size', default=100, type=int, help='Batch size')
      parser.add_argument('--pop_number', default=3, type=int, help='Batch size')
      parser.add_argument('--datetime', default='00000000', type=str, help='checkpoint datetime')
      parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
      parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
      parser.add_argument('--baseline', default='AT', type=str, help='baseline')

Visualizing Robust and Non-Robust Features

  • Feature Interpreation

    • Run visualize.py
    parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
    parser.add_argument('--steps', default=10, type=int, help='adv. steps')
    parser.add_argument('--eps', default=0.03, type=float, help='max norm')
    parser.add_argument('--dataset', default='cifar10', type=str, help='dataset name')
    parser.add_argument('--network', default='vgg', type=str, help='network name')
    parser.add_argument('--gpu_id', default='0', type=str, help='gpu id')
    parser.add_argument('--data_root', default='./datasets', type=str, help='path to dataset')
    parser.add_argument('--epoch', default=0, type=int, help='epoch number')
    parser.add_argument('--attack', default='pgd', type=str, help='attack type')
    parser.add_argument('--save_dir', default='./experiment', type=str, help='save directory')
    parser.add_argument('--batch_size', default=1, type=int, help='Batch size')
    parser.add_argument('--pop_number', default=3, type=int, help='Batch size')
    parser.add_argument('--prior', default='AT', type=str, help='Plain or AT')
    parser.add_argument('--prior_datetime', default='00000000', type=str, help='checkpoint datetime')
    parser.add_argument('--pretrained', default='false', type=str2bool, help='pretrained boolean')
    parser.add_argument('--batchnorm', default='true', type=str2bool, help='batchnorm boolean')
    parser.add_argument('--vis_atk', default='True', type=str2bool, help='is attacked image?')

Owner
LBK
Ph.D Candidate, KAIST EE
LBK
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022