Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Overview

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Introduction

📋 Official implementation of Explainable Robust Learning MLNThis repository is official im the following paper:

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Arxiv

Our contributions are as follows

✔️ We propose a simple yet effective robust learning method leveraging a mixture of experts model on various noise settings.

✔️ The proposed method can not only robustly train from noisy data, but can also provide the explainability by discovering the underlying instance wise noise pattern within the dataset as well the two types of predictive uncertainties(aleatoric and epistemic)

✔️ We present a novel evaluation scheme for validating the set-dependent corruption pattern estimation performance.

Objective

Architecture

Requirements

torch==1.7.1
torchvision==0.8.2
matplotlib==3.4.1
scikit-learn==0.24.1
gensim==4.0.1
scipy==1.6.2
seaborn==0.11.1
Pillow==8.2.0

Datasets

Please download mannually TREC dataset

TREC TREC

Reproducing results of the paper

e.g., mnist on class conditional noise setting

mkdir ckpt
mkdir res
cd scripts
./ccn_mnist.sh

💡 Class Conditional Noise

CIFAR10

Flipping Rate F-correction Co-teaching Co-teaching+ JoCoR MLN(ours)
Symmetry-20% 68.74±0.20 78.23±0.27 78.71±0.34 85.73±0.19 84.20±0.05
Symmetry-50% 42.71±0.42 71.30±0.13 57.05±0.54 79.41±0.25 77.88±0.07
Symmetry-80% 15.88±0.42 26.58±2.22 24.19±2.74 27.78±3.06 41.83±0.10
Asymmetry-40% 70.60±0.40 73.78±0.22 68.84±0.20 76.36±0.49 76.62±0.07

Noise Transition Matrix on CIFAR10

💡 Set Dependent Noise

aleatoric uncertainty for the ambiguous set is higher than the clean set and larger for more label noise rate.

estimated noise transition matrix for partioned sets are:

Citing our paper

If you find this work useful please consider citing it:

@article{papername,
  title={title},
  author={authors},
  journal={arXiv preprint arXiv:xxxx.xxxxx},
  year={2021}
}
Owner
JeongEun Park
Interested in artificial intelligence and robotics
JeongEun Park
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022