Visualization of numerical optimization algorithms

Overview

Visualization of numerical optimization algorithms

Numerical optimization is one of the core math foundations in image processing and machine learning. But I remember in the beginning of my Ph.D. years, the math behind always made me frustrated 🙁 🙁 .

During the winter vacation of 2016, I decided to make a change. I revisited some well-known optimization methods (e.g., Gradient Descent, Newton/Quasi-Newton Method, ALM, etc.), and made a series of GIF visualizations to show how these algorithms behave dynamically. Check out this repository and hope it can help you better understand these algorithms.

Gradient Descent Methods.

Fixed step size: Step size=0.5.

Fixed step size: Step size=0.1.

Fixed step size: Step size=1.

Gradient decent with the Nesterov Momentum.

Steepest Descent Method. The step size is determined by using line-search towards the gradient decent direction. The "zigzag" trajectory may cause slow convergence at ill-conditioned regions.

Conjugate Gradient Descent and Coordinate Descent Methods.

Fletcher-Reeves (FR). The FR conjugate gradient method may have very slow convergence rate if the step size is not well controlled.

Polakhe-Ribiere-Polyak (RPR). The PRP method is usually better than FR for ill-conditioned problems. Note that although it is called a "conjugate" method, the update direction (red line) is usually not vertical to the true gradient direction (black line).

Coordinate Descent. The coordinate descent method selects only one coordinate at one time for update. The well-known LibLinear package incorporates this idea to solve the linear SVM. In ill-conditioned regions, this algorithm may also face the "zigzag-step" problem.

Newton Methods.

Basic Newton Method. The black curve is the contour of the 2nd order approximation of the objective function. As the Hessian matrix at the initial point is non-positive, the optimization is not stable at very early steps.

Levenbery-Marquardt (LM) Method. LM method improves the stability of the basic Newton method by adding a small diagonal matrix to the Hessian matrix. This algorithm also can be seen as an integration of the basic Newton method and the gradient descent method.

Damped Newton Method. Damped Newton method can be viewed as a combination of the basic Newton method and the line-search based method. In spite of the fact that the Hessian matrix may be non-positive, the convergance can still be guaranteed.

Broyden Fletcher Goldfarb Shanno (BFGS). The BFGS method is the representative of quasi-Newton methods. It takes the first order gradients to approximate the Hessian matrix. In this figure, the red curve represents the true second-order information, while the black curve represents an approximated one by using BFGS.

Gaussian Newton Least Square Method (GNLS). The Gaussian-Newton least square method is a classical algorithm for solving nonlinear least squares regression problems. The essence of this algorithm is to use the first order Jacobian matrix (black curve) as an approximation of the Hessian matrix (red curve).

Random search algorithm

Genetic Algorithm (GA). GA is a classical algorithm to solve non-convex optimization problems. The key to this algorithm can be summarized as: "breeding", "mutation" and "natural selection". In this figure, the green scatters represent the descendants and the red ones represent the result of natural selection.

Simulated Annealing Algorithm (SAA). SAA is another kind of classical algorithm to solve nonconvex optimization problems. In this figure, the red curve on the right corresponds to the "temperature" and the blue curve corresponds to the objective function value. The objective function value converges with the decrease of the temperature.

Constrained Optimization Method

Gradient Projection Method (GPM). GPM is the most straight-forward way to solve a constrained optimization problem. In each interation, the gradient is projected to the feasible domain to make the current point satisfies the constraints.

Exterior-Point Penalty Method. The exterior-point penalty method is a classical way to solve constrained optimization problems. The key to this algorithm is to penalize the objective function outside the feasible domain so that to convert the original constrained problem into an unconstrained one. Note that the objectve may become ill-conditioned at the boundary of the constraints.

Inner-Point Barrier Method. The Inner-Point Barrier Method is another classical way to solve constrained optimization problems. Different from the exterior-point penalty methods where the objective is penalized outside the feasible region, the inner-point barrier method constructs a barrier function at the boundary of the feasible domain so that to prevent crossing the boundary. Similar to the exterior-point penalty method, the objectve may become ill-conditioned at the boundary of the constraints.

Lagrange Dual Ascent Method. By adding a Lagrangian multiplier, any constrained problem can be equally converted to an unconstrained max-min problem . In the Lagrange Dual Ascent Method, the variable x and the Lagrangian multiplier coefficient are alternately updated. Note that when the background color changes, the Lagrangian multiplier started to be taken into consideration during the updates.

Augmented Lagrangian Method (ALM). ALM is designed based on the Lagrange Dual Ascent Method by adding a penalty function as Augmented Lagrangian multipliers. ALM is more robust at ill-conditioned regions, e.g., at the boundary of constraints.

"keep Calm and Don't Overfit."

Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
PyPassword is a simple follow up to PyPassphrase

PyPassword PyPassword is a simple follow up to PyPassphrase. After finishing that project it occured to me that while some may wish to use that option

Scotty 2 Jan 22, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 111 Jan 03, 2023
University of Missouri - Kansas City: CS451R: Capstone

CS451RC University of Missouri - Kansas City: CS451R: Capstone Installation cd git clone https://github.com/ala2q6/CS451RC.git cd CS451RC pip3 instal

Alex Arbuckle 1 Nov 17, 2021
A pandas extension that solves all problems of Jalai/Iraninan/Shamsi dates

Jalali Pandas Extentsion A pandas extension that solves all problems of Jalai/Iraninan/Shamsi dates Features Series Extenstion Convert string to Jalal

51 Jan 02, 2023
Function Plotter: a simple application with GUI to plot mathematical functions

Function-Plotter Function Plotter is a simple application with GUI to plot mathe

Mohamed Nabawe 4 Jan 03, 2022
Python package for the analysis and visualisation of finite-difference fields.

discretisedfield Marijan Beg1,2, Martin Lang2, Samuel Holt3, Ryan A. Pepper4, Hans Fangohr2,5,6 1 Department of Earth Science and Engineering, Imperia

ubermag 12 Dec 14, 2022
Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Karl Jaehnig 7 Oct 22, 2022
3D-Lorenz-Attractor-simulation-with-python

3D-Lorenz-Attractor-simulation-with-python Animação 3D da trajetória do Atrator de Lorenz, implementada em Python usando o método de Runge-Kutta de 4ª

Hevenicio Silva 17 Dec 08, 2022
ipyvizzu - Jupyter notebook integration of Vizzu

ipyvizzu - Jupyter notebook integration of Vizzu. Tutorial · Examples · Repository About The Project ipyvizzu is the Jupyter Notebook integration of V

Vizzu 729 Jan 08, 2023
VDLdraw - Batch plot the log files exported from VisualDL using Matplotlib

VDLdraw Batch plot the log files exported from VisualDL using Matplotlib. At pre

Yizhou Chen 5 Sep 26, 2022
GDSHelpers is an open-source package for automatized pattern generation for nano-structuring.

GDSHelpers GDSHelpers in an open-source package for automatized pattern generation for nano-structuring. It allows exporting the pattern in the GDSII-

Helge Gehring 76 Dec 16, 2022
Scientific Visualization: Python + Matplotlib

An open access book on scientific visualization using python and matplotlib

Nicolas P. Rougier 8.6k Dec 31, 2022
clock_plot provides a simple way to visualize timeseries data, mapping 24 hours onto the 360 degrees of a polar plot

clock_plot clock_plot provides a simple way to visualize timeseries data mapping 24 hours onto the 360 degrees of a polar plot. For usage, please see

12 Aug 24, 2022
A research of IT labor market based especially on hh.ru. Salaries, rate of technologies and etc.

hh_ru_research Проект реализован в учебных целях анализа рынка труда, в особенности по hh.ru Input data В качестве входных данных используются сериали

3 Sep 07, 2022
Altair extension for saving charts in a variety of formats.

Altair Saver This packge provides extensions to Altair for saving charts to a variety of output types. Supported output formats are: .json/.vl.json: V

Altair 85 Dec 09, 2022
Geocoding library for Python.

geopy geopy is a Python client for several popular geocoding web services. geopy makes it easy for Python developers to locate the coordinates of addr

geopy 3.8k Jan 02, 2023
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

MLH Fellowship 7 Oct 05, 2022
A blender import/export system for Defold

defold-blender-export A Blender export system for the Defold game engine. Setup Notes There are no exhaustive documents for this tool yet. Its just no

David Lannan 27 Dec 30, 2022
A grammar of graphics for Python

plotnine Latest Release License DOI Build Status Coverage Documentation plotnine is an implementation of a grammar of graphics in Python, it is based

Hassan Kibirige 3.3k Jan 01, 2023
Generate SVG (dark/light) images visualizing (private/public) GitHub repo statistics for profile/website.

Generate daily updated visualizations of GitHub user and repository statistics from the GitHub API using GitHub Actions for any combination of private and public repositories, whether owned or contri

Adam Ross 2 Dec 16, 2022