Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

Overview

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection.

Mask-aware IoU for Anchor Assignment in Real-time Instance Segmentation,
Kemal Oksuz, Baris Can Cam, Fehmi Kahraman, Zeynep Sonat Baltaci, Emre Akbas, Sinan Kalkan, BMVC 2021. (arXiv pre-print)

Summary

Mask-aware IoU: Mask-aware IoU (maIoU) is an IoU variant for better anchor assignment to supervise instance segmentation methods. Unlike the standard IoU, Mask-aware IoU also considers the ground truth masks while assigning a proximity score for an anchor. As a result, for example, if an anchor box overlaps with a ground truth box, but not with the mask of the ground truth, e.g. due to occlusion, then it has a lower score compared to IoU. Please check out the examples below for more insight. Replacing IoU by our maIoU in the state of the art ATSS assigner yields both performance improvement and efficiency (i.e. faster inference) compared to the standard YOLACT method.

maYOLACT Detector: Thanks to the efficiency due to ATSS with maIoU assigner, we incorporate more training tricks into YOLACT, and built maYOLACT Detector which is still real-time but significantly powerful (around 6 AP) than YOLACT. Our best maYOLACT model reaches SOTA performance by 37.7 mask AP on COCO test-dev at 25 fps.

How to Cite

Please cite the paper if you benefit from our paper or the repository:

@inproceedings{maIoU,
       title = {Mask-aware IoU for Anchor Assignment in Real-time Instance Segmentation},
       author = {Kemal Oksuz and Baris Can Cam and Fehmi Kahraman and Zeynep Sonat Baltaci and Sinan Kalkan and Emre Akbas},
       booktitle = {The British Machine Vision Conference (BMCV)},
       year = {2021}
}

Specification of Dependencies and Preparation

  • Please see get_started.md for requirements and installation of mmdetection.
  • Please refer to introduction.md for dataset preparation and basic usage of mmdetection.

Trained Models

Here, we report results in terms of AP (higher better) and oLRP (lower better).

Multi-stage Object Detection

Comparison of Different Assigners (on COCO minival)

Scale Assigner mask AP mask oLRP Log Config Model
400 Fixed IoU 24.8 78.3 log config model
400 ATSS w. IoU 25.3 77.7 log config model
400 ATSS w. maIoU 26.1 77.1 log config model
550 Fixed IoU 28.5 75.2 log config model
550 ATSS w. IoU 29.3 74.5 log config model
550 ATSS w. maIoU 30.4 73.7 log config model
700 Fixed IoU 29.7 74.3 log config model
700 ATSS w. IoU 30.8 73.3 log config model
700 ATSS w. maIoU 31.8 72.5 log config model

maYOLACT Detector (on COCO test-dev)

Scale Backbone mask AP fps Log Config Model
maYOLACT-550 ResNet-50 35.2 30 Coming Soon
maYOLACT-700 ResNet-50 37.7 25 Coming Soon

Running the Code

Training Code

The configuration files of all models listed above can be found in the configs/mayolact folder. You can follow get_started.md for training code. As an example, to train maYOLACT using images with 550 scale on 4 GPUs as we did, use the following command:

./tools/dist_train.sh configs/mayolact/mayolact_r50_4x8_coco_scale550.py 4

Test Code

The configuration files of all models listed above can be found in the configs/mayolact folder. You can follow get_started.md for test code. As an example, first download a trained model using the links provided in the tables below or you train a model, then run the following command to test a model model on multiple GPUs:

./tools/dist_test.sh configs/mayolact/mayolact_r50_4x8_coco_scale550.py ${CHECKPOINT_FILE} 4 --eval bbox segm 

You can also test a model on a single GPU with the following example command:

python tools/test.py configs/mayolact/mayolact_r50_4x8_coco_scale550.py ${CHECKPOINT_FILE} --eval bbox segm
Owner
Kemal Oksuz
Kemal Oksuz
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022