An open source Jetson Nano baseboard and tools to design your own.

Related tags

Deep Learninghardware
Overview

My Jetson Nano Baseboard

Render of My Jetson Nano Baseboard

Picture of My Jetson Nano Baseboard

This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It also repurposes some of the Jetson Nano’s interface signals for simple beginner projects.

This baseboard, as designed, contains:

  • A 5V, 4A DC barrel jack
  • 4 USB 2.0 connectors
  • An HDMI connector
  • A UART-to-USB bridge
  • A debug USB
  • A 40-pin GPIO
  • A servo header
  • Three user-interactive buttons (power, reset, and force recovery)
  • A flex connector for an OLED display

Use these files to kickstart your own application-specific baseboard or implement some quick and easy projects!

Quick Start

You only need a computer to get started right now! For a more in-depth setup guide, check out docs/setup.md.

  1. Install the appropriate version of KiCAD, an open source schematic and layout design program, for your operating system here.

  2. Download this GitHub repository either as a ZIP or on the command line.

  3. Save the following symbol and footprint libraries to the “Design Files/Libraries” folder (you may have to make an account – alternatively, if you want the practice, you could try making them yourself):

    1. B3SL-1002P
    2. TPD4E02B04DQAR
    3. 3-1734592-0
    4. DC-005-2.0A
    5. ACM2012-201-2P-T001
    6. 10029449-111RLF
    7. 2309413-1
  4. Open the project (.pro) file in KiCAD.

  5. Add the symbol and footprint libraries as project-specific to your KiCAD program, following this guide. You will know that the libraries are correctly loaded when there are no more boxes with question marks.

  6. You are now set up to tinker with the files and launch your own hardware designs!

Be sure to download the Jetson Nano Product Design Guide here (NVIDIA Developer account required) to help you with your design.

If you want to make your boards and test them, you’ll need the Jetson Nano module (not included, can be bought as part of the developer kit here). It is also helpful to have electronics equipment like an oscilloscope, a multimeter, and a soldering iron.

Questions and Improvements

If you have a suggestion, please open an issue on GitHub.

Please share your projects with us on the Jetson Developer Forums.

Comments
  • Servo PWM signal does not switch logic levels, remains high

    Servo PWM signal does not switch logic levels, remains high

    Problem When running the sampleproj/servo_pwm.py script, SERVO_PWM remains high, even as the GPIO07 pin outputs a PWM signal.

    Release A00, no modifications

    Observed Behavior Servo PWM remains high even when PWM script is run.

    GPIO07 at 40-pin header: gpio7 configured0

    SERVO_PWM at servo header: gpio 7

    Root Cause Theory The pullup could be too strong; the transistor connection may not be consistent across boards. This is another issue that switching to a larger package transistor should fix.

    Suggested Next Steps

    • Switch to larger package transistor (as in issue #5 & 2)
    • Test additional boards to ensure transistor connection remains consistent
    bug A01 Fix 
    opened by wolframalexa 1
  • Fails sleep/wake software cycle

    Fails sleep/wake software cycle

    Problem Board cannot be wake from software; the physical button must be pushed.

    Release A00, no modifications

    Observed Behavior When running the validation/sleep_func.sh script, the device does not wake until the power button is pushed.

    Root Cause Theory An issue with how L4T interacts with the baseboard.

    Suggested Next Steps

    • Probe power logic signals to ensure sequencing is correct
    • Read L4T documentation for power design
    bug 
    opened by wolframalexa 1
  • OLED display does not fit in specified connector

    OLED display does not fit in specified connector

    Problem The specified OLED display does not fit in the specified connector. Users cannot use the display.

    Release A00, no modifications

    Observed Behavior The connector is too small for the display.

    Root Cause Theory Mistakes were made.

    Suggested Next Steps Choose new connector for display.

    bug A01 Fix 
    opened by wolframalexa 1
  • Fan PWM signal not in compliance

    Fan PWM signal not in compliance

    Problem Users cannot use a fan, because the fan PWM signal is not in electrical compliance.

    Observed Behavior GPIO14 provides a nice PWM signal, but the signal becomes less crisp as it goes through the level shifter. In both images below, the blue line is the FAN_PWM_LS node. Yellow: left = GPIO14, right = FAN_PWM_INV.

    image image

    The transistor Q3 should invert the PWM signal, but does not appear to do so.

    Root Cause Theory At 20kHz, it is unlikely the fan signal is switching too fast for the transistor. It may be due to a transistor misalignment; switch from the DMN26D0UFB4-7 to the DMN26D0UT-7, which is in a larger SOT-523 package, to avoid misalignments.

    Suggested Next Steps Ask a more experienced engineer. May need a larger pullup, or more power control.

    bug A01 Fix 
    opened by wolframalexa 1
  • Some USB 2.0 type A ports are not functional

    Some USB 2.0 type A ports are not functional

    Problem Some USB ports on some boards do not respond when a USB mouse or keyboard is plugged into them.

    Observed Behavior When a USB mouse or keyboard is plugged into one of the four type A ports, it occasionally does not work (the pointer does not move, no text appears on screen). This hinders the ability for the user to interact with the display, and to use the USB devices they need.

    Root Cause Theory This is only present on some ports on some boards; it could be a manufacturing or hub chip error.

    Suggested Next Steps

    • Visually check all USB components to ensure there is no damage
    • Ensure hub chip is strapped correctly
    • Ensure USB layout guidelines are followed for signal integrity
    bug A01 Fix 
    opened by wolframalexa 1
  • Low-resolution HDMI (1280x720)

    Low-resolution HDMI (1280x720)

    Problem The maximum HDMI resolution seems to be 1280x720, whereas the Jetson Nano achieves a resolution of 2560x1440. As a result, the display appears zoomed in.

    Release A00, no modifications

    Observed Behavior

    • This is present on all boards, with the same module as on the official baseboard - probably a hardware design issue, and not a software issue
    • The resolution on the official Jetson Nano is twice that of "My Jetson Nano Baseboard"

    Root Cause Theory Resistor values may need to be tuned for better resolutions. Additionally, an EEPROM may be read to confirm HDMI resolution.

    Suggested Next Steps Investigate L4T behavior with regard to HDMI and resistor tuning on CEC line.

    bug A01 Fix 
    opened by wolframalexa 1
  • Power LED does not light up on some boards

    Power LED does not light up on some boards

    Problem On some boards, the power LED D6 does not light, even though the board completes its power-on sequence and has booted normally.

    Release A00, no modifications

    Observed Behavior

    • The LED is the correct direction
    • The board completes its power on sequence and the software functions as expected
    • GPIO04 remains LOW at 0.6V, even though it should be driven HIGH upon power-up
    • There is no measured voltage drop across R32
    • There is an insufficient voltage drop across D6

    Root Cause Theory The gate threshold voltage varies depending on the individual transistor. It could be that this transistor has a higher V_GS and does not turn on when GPIO04 is at 0.6V. Additionally, the transistor Q7 could be misaligned.

    Suggested Next Steps

    • Investigate behavior of GPIO04, which should be HIGH upon power-on. Remove R31 to ensure no loading effects from transistor.
    • Change all transistors DMN26D0UFB4-7 to the DMN26D0UT-7, which is in a larger SOT-523 package, to avoid misalignments.
    bug A01 Fix 
    opened by wolframalexa 1
  • Make silkscreen more readable

    Make silkscreen more readable

    • Increase silkscreen size from 0.5x0.5mm to 0.438x0.7mm to make the text more readable.
    • Add polarity for all ICs and polarized components to aid in soldering
    • Add silkscreen on front for 40-pin header
    enhancement A01 Fix 
    opened by wolframalexa 0
Releases(A01)
  • A01(Aug 12, 2021)

    After having manufactured the boards and validated them, we're fixing some functionality. Here are the changes, which you can read about in our issues:

    • Fix footprints (#11):
      • DC Jack flipped
      • GPIO header flipped (pin 1 should be pin 2)
      • USB footprint with soldermask (#4)
      • New OLED display connector & display (#6)
    • Usability enhancements, with more readable silkscreen (#10)
    • BOM errors:
      • SODIMM connector (#9)
      • HDMI current limiting resistor, which allows for correct resolution (#3)
      • Larger transistor footprint to avoid misalignments (#8, #5)
    • Fix pullup
      • Add pullup to GPIO04 (#2)
    Source code(tar.gz)
    Source code(zip)
  • A00(Jul 28, 2021)

Owner
NVIDIA AI IOT
NVIDIA AI IOT
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022