Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

Related tags

Text Data & NLPnelf
Overview

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting

Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

Tiancheng Sun1*, Kai-En Lin1*, Sai Bi2, Zexiang Xu2, Ravi Ramamoorthi1

1University of California, San Diego, 2Adobe Research

*Equal contribution

Project Page | Paper | Pretrained models | Validation data | Rendering script

Requirements

Install required packages

Make sure you have up-to-date NVIDIA drivers supporting CUDA 11.1 (10.2 could work but need to change cudatoolkit package accordingly)

Run

conda env create -f environment.yml
conda activate pixelnerf

The following packages are used:

  • PyTorch (1.7 & 1.9.0 Tested)

  • OpenCV-Python

  • matplotlib

  • numpy

  • tqdm

OS system: Ubuntu 20.04

Download CelebAMask-HQ dataset link

  1. Download the dataset

  2. Remove background with the provided masks in the dataset

  3. Downsample the dataset to 512x512

  4. Store the resulting data in [path_to_data_directory]/CelebAMask

    Following this data structure

    [path_to_data_directory] --- data --- CelebAMask --- 0.jpg
                                       |              |- 1.jpg
                                       |              |- 2.jpg
                                       |              ...
                                       |- blender_both --- sub001
                                       |                |- sub002
                                       |                ...
    
    

(Optional) Download and render FaceScape dataset link

Due to FaceScape's license, we cannot release the full dataset. Instead, we will release our rendering script.

  1. Download the dataset

  2. Install Blender link

  3. Run rendering script link

Usage

Testing

  1. Download our pretrained checkpoint and testing data. Extract the content to [path_to_data_directory]. The data structure should look like this:

    [path_to_data_directory] --- data --- CelebAMask
                              |        |- blender_both
                              |        |- blender_view
                              |        ...
                              |- data_results --- nelf_ft
                              |- data_test --- validate_0
                                            |- validate_1
                                            |- validate_2
    
  2. In arg/__init__.py, setup data path by changing base_path

  3. Run python run_test.py nelf_ft [validation_data_name] [#iteration_for_the_model]

    e.g. python run_test.py nelf_ft validate_0 500000

  4. The results are stored in [path_to_data_directory]/data_test/[validation_data_name]/results

Training

Due to FaceScape's license, we are not allowed to release the full dataset. We will use validation data to run the following example.

  1. Download our validation data. Extract the content to [path_to_data_directory]. The data structure should look like this:

    [path_to_data_directory] --- data --- CelebAMask
                              |        |- blender_both
                              |        |- blender_view
                              |        ...
                              |- data_results --- nelf_ft
                              |- data_test --- validate_0
                                            |- validate_1
                                            |- validate_2
    

    (Optional) Run rendering script and render your own data.

    Remember to change line 35~42 and line 45, 46 in arg/config_nelf_ft.py accordingly.

  2. In arg/__init__.py, setup data path by changing base_path

  3. Run python run_train.py nelf_ft

  4. The intermediate results and model checkpoints are saved in [path_to_data_directory]/data_results/nelf_ft

Configs

The following config files can be found inside arg folder

Citation

@inproceedings {sun2021nelf,
    booktitle = {Eurographics Symposium on Rendering},
    title = {NeLF: Neural Light-transport Field for Portrait View Synthesis and Relighting},
    author = {Sun, Tiancheng and Lin, Kai-En and Bi, Sai and Xu, Zexiang and Ramamoorthi, Ravi},
    year = {2021},
}
Owner
Ken Lin
Ken Lin
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
Code for the project carried out fulfilling the course requirements for Fall 2021 NLP at NYU

Introduction Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization,

Sai Himal Allu 1 Apr 25, 2022
NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings

MCSE: Multimodal Contrastive Learning of Sentence Embeddings This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multi

Saarland University Spoken Language Systems Group 39 Nov 15, 2022
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

BADER ALABDAN 2 Oct 22, 2022
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

Akuchi 36 Dec 18, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

Keon Lee 142 Jan 06, 2023
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
KR-FinBert And KR-FinBert-SC

KR-FinBert & KR-FinBert-SC Much progress has been made in the NLP (Natural Language Processing) field, with numerous studies showing that domain adapt

5 Jul 29, 2022