SQL for Humans™

Overview

Records: SQL for Humans™

https://travis-ci.org/kennethreitz/records.svg?branch=master

Records is a very simple, but powerful, library for making raw SQL queries to most relational databases.

https://farm1.staticflickr.com/569/33085227621_7e8da49b90_k_d.jpg

Just write SQL. No bells, no whistles. This common task can be surprisingly difficult with the standard tools available. This library strives to make this workflow as simple as possible, while providing an elegant interface to work with your query results.

Database support includes RedShift, Postgres, MySQL, SQLite, Oracle, and MS-SQL (drivers not included).


☤ The Basics

We know how to write SQL, so let's send some to our database:

import records

db = records.Database('postgres://...')
rows = db.query('select * from active_users')    # or db.query_file('sqls/active-users.sql')

Grab one row at a time:

>>> rows[0]
<Record {"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "[email protected]", "timezone": "2016-02-06 22:28:23.894202"}>

Or iterate over them:

for r in rows:
    print(r.name, r.user_email)

Values can be accessed many ways: row.user_email, row['user_email'], or row[3].

Fields with non-alphanumeric characters (like spaces) are also fully supported.

Or store a copy of your record collection for later reference:

>>> rows.all()
[<Record {"username": ...}>, <Record {"username": ...}>, <Record {"username": ...}>, ...]

If you're only expecting one result:

>>> rows.first()
<Record {"username": ...}>

Other options include rows.as_dict() and rows.as_dict(ordered=True).

☤ Features

  • Iterated rows are cached for future reference.
  • $DATABASE_URL environment variable support.
  • Convenience Database.get_table_names method.
  • Command-line records tool for exporting queries.
  • Safe parameterization: Database.query('life=:everything', everything=42).
  • Queries can be passed as strings or filenames, parameters supported.
  • Transactions: t = Database.transaction(); t.commit().
  • Bulk actions: Database.bulk_query() & Database.bulk_query_file().

Records is proudly powered by SQLAlchemy and Tablib.

☤ Data Export Functionality

Records also features full Tablib integration, and allows you to export your results to CSV, XLS, JSON, HTML Tables, YAML, or Pandas DataFrames with a single line of code. Excellent for sharing data with friends, or generating reports.

>>> print(rows.dataset)
username|active|name      |user_email       |timezone
--------|------|----------|-----------------|--------------------------
model-t |True  |Henry Ford|[email protected]|2016-02-06 22:28:23.894202
...

Comma Separated Values (CSV)

>>> print(rows.export('csv'))
username,active,name,user_email,timezone
model-t,True,Henry Ford,[email protected],2016-02-06 22:28:23.894202
...

YAML Ain't Markup Language (YAML)

>>> print(rows.export('yaml'))
- {active: true, name: Henry Ford, timezone: '2016-02-06 22:28:23.894202', user_email: model-t@gmail.com, username: model-t}
...

JavaScript Object Notation (JSON)

>>> print(rows.export('json'))
[{"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "[email protected]", "timezone": "2016-02-06 22:28:23.894202"}, ...]

Microsoft Excel (xls, xlsx)

with open('report.xls', 'wb') as f:
    f.write(rows.export('xls'))

Pandas DataFrame

>>> rows.export('df')
    username  active       name        user_email                   timezone
0    model-t    True Henry Ford model-t@gmail.com 2016-02-06 22:28:23.894202

You get the point. All other features of Tablib are also available, so you can sort results, add/remove columns/rows, remove duplicates, transpose the table, add separators, slice data by column, and more.

See the Tablib Documentation for more details.

☤ Installation

Of course, the recommended installation method is pipenv:

$ pipenv install records[pandas]
✨🍰✨

☤ Command-Line Tool

As an added bonus, a records command-line tool is automatically included. Here's a screenshot of the usage information:

Screenshot of Records Command-Line Interface.

☤ Thank You

Thanks for checking this library out! I hope you find it useful.

Of course, there's always room for improvement. Feel free to open an issue so we can make Records better, stronger, faster.

Owner
Kenneth Reitz
Software Engineer focused on abstractions, reducing cognitive overhead, and Design for Humans.
Kenneth Reitz
Google Cloud Client Library for Python

Google Cloud Python Client Python idiomatic clients for Google Cloud Platform services. Stability levels The development status classifier on PyPI ind

Google APIs 4.1k Jan 01, 2023
Python client for Apache Kafka

Kafka Python client Python client for the Apache Kafka distributed stream processing system. kafka-python is designed to function much like the offici

Dana Powers 5.1k Jan 08, 2023
Logica is a logic programming language that compiles to StandardSQL and runs on Google BigQuery.

Logica: language of Big Data Logica is an open source declarative logic programming language for data manipulation. Logica is a successor to Yedalog,

Evgeny Skvortsov 1.5k Dec 30, 2022
Class to connect to XAMPP MySQL Database

MySQL-DB-Connection-Class Class to connect to XAMPP MySQL Database Basta fazer o download o mysql_connect.py e modificar os parâmetros que quiser. E d

Alexandre Pimentel 4 Jul 12, 2021
A fast MySQL driver written in pure C/C++ for Python. Compatible with gevent through monkey patching.

:: Description :: A fast MySQL driver written in pure C/C++ for Python. Compatible with gevent through monkey patching :: Requirements :: Requires P

ESN Social Software 549 Nov 18, 2022
Anomaly detection on SQL data warehouses and databases

With CueObserve, you can run anomaly detection on data in your SQL data warehouses and databases. Getting Started Install via Docker docker run -p 300

Cuebook 171 Dec 18, 2022
asyncio compatible driver for elasticsearch

asyncio client library for elasticsearch aioes is a asyncio compatible library for working with Elasticsearch The project is abandoned aioes is not su

97 Sep 05, 2022
Python version of the TerminusDB client - for TerminusDB API and WOQLpy

TerminusDB Client Python Development status ⚙️ Python Package status 📦 Python version of the TerminusDB client - for TerminusDB API and WOQLpy Requir

TerminusDB 66 Dec 02, 2022
A Python-based RPC-like toolkit for interfacing with QuestDB.

pykit A Python-based RPC-like toolkit for interfacing with QuestDB. Requirements Python 3.9 Java Azul

QuestDB 11 Aug 03, 2022
Official Python low-level client for Elasticsearch

Python Elasticsearch Client Official low-level client for Elasticsearch. Its goal is to provide common ground for all Elasticsearch-related code in Py

elastic 3.8k Jan 01, 2023
python-beryl, a Python driver for BerylDB.

python-beryl, a Python driver for BerylDB.

BerylDB 3 Nov 24, 2021
Records is a very simple, but powerful, library for making raw SQL queries to most relational databases.

Records: SQL for Humans™ Records is a very simple, but powerful, library for making raw SQL queries to most relational databases. Just write SQL. No b

Kenneth Reitz 6.9k Jan 03, 2023
aioodbc - is a library for accessing a ODBC databases from the asyncio

aioodbc aioodbc is a Python 3.5+ module that makes it possible to access ODBC databases with asyncio. It relies on the awesome pyodbc library and pres

aio-libs 253 Dec 31, 2022
AWS SDK for Python

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

the boto project 7.8k Jan 04, 2023
A library for python made by me,to make the use of MySQL easier and more pythonic

my_ezql A library for python made by me,to make the use of MySQL easier and more pythonic This library was made by Tony Hasson , a 25 year old student

3 Nov 19, 2021
Creating a python package to convert /transfer excelsheet data to a mysql Database Table

Creating a python package to convert /transfer excelsheet data to a mysql Database Table

Odiwuor Lameck 1 Jan 07, 2022
Simple DDL Parser to parse SQL (HQL, TSQL, AWS Redshift, Snowflake and other dialects) ddl files to json/python dict with full information about columns: types, defaults, primary keys, etc.

Simple DDL Parser Build with ply (lex & yacc in python). A lot of samples in 'tests/. Is it Stable? Yes, library already has about 5000+ usage per day

Iuliia Volkova 95 Jan 05, 2023
Sample scripts to show extracting details directly from the AIQUM database

Sample scripts to show extracting details directly from the AIQUM database

1 Nov 19, 2021
Familiar asyncio ORM for python, built with relations in mind

Tortoise ORM Introduction Tortoise ORM is an easy-to-use asyncio ORM (Object Relational Mapper) inspired by Django. Tortoise ORM was build with relati

Tortoise 3.3k Dec 31, 2022
Asynchronous Python client for InfluxDB

aioinflux Asynchronous Python client for InfluxDB. Built on top of aiohttp and asyncio. Aioinflux is an alternative to the official InfluxDB Python cl

Gustavo Bezerra 159 Dec 27, 2022