A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Overview

Qbr

Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

  • 🌈 Accurate color detection
  • 🔍 Accurate 3x3x3 rubik's cube detection
  • 🔠 Multilingual

Solve mode

solve mode

Calibrate mode

Isn't the default color detection working out for you? Use the calibrate mode to let Qbr be familiar with your cube's color scheme. If your room has proper lighting then this will give you a 99.9% guarantee that your colors will be detected properly.

Simply follow the on-screen instructions and you're ready to go.

calibrate mode calibrate mode success

Table of Contents

Introduction

The idea to create this came personally to mind when I started solving rubik's cubes. There were already so many professional programmers around the world who created robots that solve a rubik's cube in an ETA of 5 seconds and since 2016 in 1 second (link). That inspired me to create my own. I started using images only and eventually switched to webcam.

Installation

$ git clone --depth 1 https://github.com/kkoomen/qbr.git
$ cd qbr
$ python3 -m venv env
$ source ./env/bin/activate
$ pip3 install -r requirements.txt

Usage

Make sure you run source ./env/bin/activate every time you want to run the program.

Run Qbr:

$ ./src/qbr.py

This opens a webcam interface with the following things:

The first 9-sticker display (upper left corner)

This is preview mode. This will update immediately and display how Qbr has detected the colors.

The second 9-sticker display (upper left corner)

This is the snapshot state. When pressing SPACE it will create a snapshot in order to show you what state it has saved. You can press SPACE as many times as you'd like if it has been detected wrong.

Amount of sides scanned (bottom left corner)

The bottom left corner shows the amount of sides scanned. This is so you know if you've scanned in all sides before pressing ESC.

Interface language (top right corner)

In the top right corner you can see the current interface language. If you want to change the interface language you can press l to cycle through them. Continue to press l until you've found the right language.

Default language is set to English.

Available languages are:

  • English
  • Hungarian
  • Deutsch
  • French
  • Dutch
  • 简体中文

Full 2D cube state visualization (bottom right corner)

This visualization represents the whole cube state that is being saved and can be used to confirm whether the whole cube state has been scanned successfully.

Calibrate mode

The default color scheme contains the most prominent colors for white, yellow, red, orange, blue and green. If this can't detect your cube its colors properly then you can use calibrate mode.

Press c to go into calibrate mode in order to let Qbr be familiar with your cube's color scheme. Simply follow the on-screen instructions and you're ready to go.

Note: Your calibrated settings are automatically saved after you've calibrated your cube successfully. The next time you start Qbr it will automatically load it.

Tip: If you've scanned wrong, simple go out of calibrate mode by pressing c and go back into calibrate by pressing c again.

Getting the solution

Qbr checks if you have filled in all 6 sides when pressing ESC. If so, it'll calculate a solution if you've scanned it correctly.

You should now see a solution (or an error if you did it wrong).

How to scan your cube properly?

There is a strict way of scanning in the cube. Qbr will detect the side automatically, but the way you rotate the cube during the time you're scanning it is crucial in order for Qbr to properly calculate a solution. Make sure to follow the steps below properly:

  • Start off with the green side facing the camera and white on top, green being away from you. Start by scanning in the green side at this point.
  • After you've scanned in the green side, rotate the cube 90 or -90 degrees horizontally. It doesn't matter if you go clockwise or counter-clockwise. Continue to do this for the green, blue, red and orange sides until you are back at the green side.
  • You should now be in the same position like you started, having green facing the camera and white on top. Rotate the cube forward 90 degrees, resulting in green at the bottom and white facing the camera. Start scanning in the white side.
  • After you've scanned the white side, turn the cube back to how you started, having green in front again and white on top. Now rotate the cube backwards 90 degrees, resulting in green on top and yellow facing the camera. Now you can scan in the last yellow side.

If you've done the steps above correctly, you should have a solution from Qbr.

Keybindings

  • SPACE for saving the current state

  • ESC quit

  • c toggle calibrate mode

  • l switch interface language

Paramaters

You can use -n or --normalize to also output the solution in a "human-readable" format.

For example:

  • R will be: Turn the right side a quarter turn away from you.
  • F2 will be: Turn the front face 180 degrees.

Example runs

$ ./qbr.py
Starting position:
front: green
top: white

Moves: 20
Solution: U2 R D2 L2 F2 L U2 L F' U L U R2 B2 U' F2 D2 R2 D2 R2
$ ./qbr.py -n
Starting position:
front: green
top: white

Moves: 20
Solution: B2 U2 F' R U D' L' B' U L F U F2 R2 F2 D' F2 D R2 D2
1. Turn the back side 180 degrees.
2. Turn the top layer 180 degrees.
3. Turn the front side a quarter turn to the left.
4. Turn the right side a quarter turn away from you.
5. Turn the top layer a quarter turn to the left.
6. Turn the bottom layer a quarter turn to the left.
7. Turn the left side a quarter turn away from you.
8. Turn the back side a quarter turn to the right.
9. Turn the top layer a quarter turn to the left.
10. Turn the left side a quarter turn towards you.
11. Turn the front side a quarter turn to the right.
12. Turn the top layer a quarter turn to the left.
13. Turn the front side 180 degrees.
14. Turn the right side 180 degrees.
15. Turn the front side 180 degrees.
16. Turn the bottom layer a quarter turn to the left.
17. Turn the front side 180 degrees.
18. Turn the bottom layer a quarter turn to the right.
19. Turn the right side 180 degrees.
20. Turn the bottom layer 180 degrees.

Inspirational sources

Special thanks to HaginCodes for the main inspiration on how to improve my color detection.

https://github.com/HaginCodes/3x3x3-Rubiks-Cube-Solver

http://programmablebrick.blogspot.com/2017/02/rubiks-cube-tracker-using-opencv.html

https://gist.github.com/flyboy74/2cc3097f784c8c236a1a85278f08cddd

https://github.com/dwalton76/rubiks-color-resolver

License

Qbr is licensed under the MIT License.

Owner
Kim 金可明
Vim enthusiast; polyglot programmer; fullstack software engineer; QA engineer
Kim 金可明
A dataset handling library for computer vision datasets in LOST-fromat

A dataset handling library for computer vision datasets in LOST-fromat

8 Dec 15, 2022
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv

basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu

1 Jan 01, 2022
Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Multi-Type-TD-TSR Check it out on Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for

Pascal Fischer 178 Dec 27, 2022
A pure pytorch implemented ocr project including text detection and recognition

ocr.pytorch A pure pytorch implemented ocr project. Text detection is based CTPN and text recognition is based CRNN. More detection and recognition me

coura 444 Dec 30, 2022
Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and limited )

GTA-5-Lane-detection Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and

Danciu Georgian 4 Aug 01, 2021
Image Recognition Model Generator

Takes a user-inputted query and generates a machine learning image recognition model that determines if an inputted image is or isn't their query

Christopher Oka 1 Jan 13, 2022
Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words.

Handwritten-Text-Recognition Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. T

27 Jan 08, 2023
🖺 OCR using tensorflow with attention

tensorflow-ocr 🖺 OCR using tensorflow with attention, batteries included Installation git clone --recursive http://github.com/pannous/tensorflow-ocr

646 Nov 11, 2022
Assignment work with webcam

work with webcam : Press key 1 to use emojy on your face Press key 2 to use lip and eye on your face Press key 3 to checkered your face Press key 4 to

Hanane Kheirandish 2 May 31, 2022
Simple app for visual editing of Page XML files

Name nw-page-editor - Simple app for visual editing of Page XML files. Version: 2021.02.22 Description nw-page-editor is an application for viewing/ed

Mauricio Villegas 27 Jun 20, 2022
This project is basically to draw lines with your hand, using python, opencv, mediapipe.

Paint Opencv 📷 This project is basically to draw lines with your hand, using python, opencv, mediapipe. Screenshoots 📱 Tools ⚙️ Python Opencv Mediap

Williams Ismael Bobadilla Torres 3 Nov 17, 2021
Multi-choice answer sheet correction system using computer vision with opencv & python.

Multi choice answer correction 🔴 5 answer sheet samples with a specific solution for detecting answers and sheet correction. 🔴 By running the soluti

Reza Firouzi 7 Mar 07, 2022
This tool will help you convert your text to handwriting xD

So your teacher asked you to upload written assignments? Hate writing assigments? This tool will help you convert your text to handwriting xD

Saurabh Daware 4.2k Jan 07, 2023
python ocr using tesseract/ with EAST opencv detector

pytextractor python ocr using tesseract/ with EAST opencv text detector Uses the EAST opencv detector defined here with pytesseract to extract text(de

Danny Crasto 38 Dec 05, 2022
Ddddocr - 通用验证码识别OCR pypi版

带带弟弟OCR通用验证码识别SDK免费开源版 今天ddddocr又更新啦! 当前版本为1.3.1 想必很多做验证码的新手,一定头疼碰到点选类型的图像,做样本费时

Sml2h3 4.4k Dec 31, 2022
Camera Intrinsic Calibration and Hand-Eye Calibration in Pybullet

This repository is mainly for camera intrinsic calibration and hand-eye calibration. Synthetic experiments are conducted in PyBullet simulator. 1. Tes

CAI Junhao 7 Oct 03, 2022
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
Learning Camera Localization via Dense Scene Matching, CVPR2021

This repository contains code of our CVPR 2021 paper - "Learning Camera Localization via Dense Scene Matching" by Shitao Tang, Chengzhou Tang, Rui Hua

tangshitao 65 Dec 01, 2022
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022