Uses WiFi signals :signal_strength: and machine learning to predict where you are

Overview

whereami

Build Status Coverage Status PyPI PyPI

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Your computer will known whether you are on Couch #1 or Couch #2.

Cross-platform

Works on OSX, Windows, Linux (tested on Ubuntu/Arch Linux).

The package access_points was created in the process to allow scanning wifi in a cross platform manner. Using access_points at command-line will allow you to scan wifi yourself and get JSON output. whereami builds on top of it.

Installation

pip install whereami

Usage

# in your bedroom, takes a sample
whereami learn -l bedroom

# in your kitchen, takes a sample
whereami learn -l kitchen

# get a list of already learned locations
whereami locations

# cross-validated accuracy on historic data
whereami crossval
# 0.99319

# use in other applications, e.g. by piping the most likely answer:
whereami predict | say
# Computer Voice says: "bedroom"

# probabilities per class
whereami predict_proba
# {"bedroom": 0.99, "kitchen": 0.01}

If you want to delete some of the last lines, or the data in general, visit your $USER/.whereami folder.

Python

Any of the functionality is available in python as well. Generally speaking, commands can be imported:

from whereami import learn
from whereami import get_pipeline
from whereami import predict, predict_proba, crossval, locations

Accuracy

k Generally it should work really well. I've been able to learn using only 7 access points at home (test using access_points -n). At organizations you might see 70+.

Distance: anything around ~10 meters or more should get >99% accuracy.

If you're adventurous and you want to learn to distinguish between couch #1 and couch #2 (i.e. 2 meters apart), it is the most robust when you switch locations and train in turn. E.g. first in Spot A, then in Spot B then start again with A. Doing this in spot A, then spot B and then immediately using "predict" will yield spot B as an answer usually. No worries, the effect of this temporal overfitting disappears over time. And, in fact, this is only a real concern for the very short distances. Just take a sample after some time in both locations and it should become very robust.

Height: Surprisingly, vertical difference in location is typically even more distinct than horizontal differences.

Related Projects

  • The wherearehue project can be used to toggle Hue light bulbs based on the learned locations.

Almost entirely "copied" from:

https://github.com/schollz/find

That project used to be in Python, but is now written in Go. whereami is in Python with lessons learned implemented.

Tests

It's possible to locally run tests for python 2.7, 3.4 and 3.5 using tox.

git clone https://github.com/kootenpv/whereami
cd whereami
python setup.py install
tox
Owner
Pascal van Kooten
AI / Deep learning enthusiast
Pascal van Kooten
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Stox A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict

Stox 31 Dec 16, 2022
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE)

FFT-accelerated Interpolation-based t-SNE (FIt-SNE) Introduction t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful method for dimensi

Kluger Lab 547 Dec 21, 2022
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022