Learn Blockchains by Building One, A simple Blockchain in Python using Flask as a micro web framework.

Overview

Blockchain

forthebadge forthebadge forthebadge

Learn Blockchains by Building One Yourself

Installation

  1. Make sure Python 3.6+ is installed.
  2. Install Flask Web Framework.
  3. Clone this repository
    $ git clone https://github.com/krvaibhaw/blockchain.git
  1. Change Directory
    $ cd blockchain
  1. Install requirements
    $ pip install requirements.txt
  1. Run the server:
    $ python blockchain.py 
  1. Head to the Web brouser and visit
    http://127.0.0.1:5000/

Introduction

Blockchain is a specific type of database. It differs from a typical database in the way it stores information; blockchains store data in blocks that are then chained together. As new data comes in it is entered into a fresh block. Once the block is filled with data it is chained onto the previous block, which makes the data chained together in chronological order. Different types of information can be stored on a blockchain but the most common use so far has been as a ledger for transactions.

What is Blockchain?

A blockchain is essentially a digital ledger of transactions that is duplicated and distributed across the entire network of computer systems on the blockchain. It is a growing list of records, called blocks, that are linked together using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data (generally represented as a Merkle tree). The timestamp proves that the transaction data existed when the block was published in order to get into its hash.

As blocks each contain information about the block previous to it (by cryptographic hash of the previous block), they form a chain, with each additional block reinforcing the ones before it. Therefore, blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

How does it works?

Blockchains are typically managed by a peer-to-peer network for use as a publicly distributed ledger, where nodes collectively adhere to a protocol to communicate and validate new blocks. Although blockchain records are not unalterable as forks are possible, blockchains may be considered secure by design and exemplify a distributed computing system with high Byzantine fault tolerance.

Why Blockchain?

  • Immutable: Blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

  • Decentralized: It doesn’t have any governing authority or a single person looking after the framework. Rather a group of nodes maintains the network making it decentralized. It means :

      -> Transparency
      -> User Control
      -> Less Prone to Breakdown
      -> Less chance of Failure.
      -> No Third-Party
    
  • Enhanced Security: If someone wants to corrupt the network, he/she would have to alter every data stored on every node in the network. There could be millions and millions of people, where everyone has the same copy of the ledger.

  • Distributed Ledgers: The ledger on the network is maintained by all other users on the system. This distributed computational power across the computers to ensure a better outcome. It ensures :

      -> No Malicious Changes
      -> Ownership of Verification
      -> Quick Response
      -> Managership
      -> No Extra Favors
    
  • Consensus: The architecture is cleverly designed, and consensus algorithms are at the core of this architecture. The consensus is a decision-making process for the group of nodes active on the network. The consensus is responsible for the network being trustless. Nodes might not trust each other, but they can trust the algorithms that run at the core of it. That’s why every decision on the network is a winning scenario for the blockchain.

  • True Traceability: With blockchain, the supply chain becomes more transparent than ever, as compared to traditional supply chain, where it is hard to trace items that can lead to multiple problems, including theft, counterfeit, and loss of goods.

Understanding the Program

Firstly, we defined the structure of our block, which contains, block index, timestamp of when it has been created, proof of work, along with previous hash i.e., the hash of previous block. In real case seanario along with these there are other contents such as a body or transaction list, etc.

    def createblock(self, proof, prevhash):
        
        # Defining the structure of our block
        block = {'index': len(self.chain) + 1,
                 'timestamp': str(datetime.datetime.now()),
                 'proof': proof,
                 'prevhash': prevhash}

        # Establishing a cryptographic link
        self.chain.append(block)
        return block

The genesis block is the first block in any blockchain-based protocol. It is the basis on which additional blocks are added to form a chain of blocks, hence the term blockchain. This block is sometimes referred to Block 0. Every block in a blockchain stores a reference to the previous block. In the case of Genesis Block, there is no previous block for reference.

    def __init__(self):
        
        self.chain = []
        
        # Creating the Genesis Block
        self.createblock(proof = 1, prevhash = "0")

Proof of Work(PoW) is the original consensus algorithm in a blockchain network. The algorithm is used to confirm the transaction and creates a new block to the chain. In this algorithm, minors (a group of people) compete against each other to complete the transaction on the network. The process of competing against each other is called mining. As soon as miners successfully created a valid block, he gets rewarded.

    def proofofwork(self, prevproof):
        newproof = 1
        checkproof = False

        # Defining crypto puzzle for the miners and iterating until able to mine it 
        while checkproof is False:
            op = hashlib.sha256(str(newproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] == "00000":
                checkproof = True
            else:
                newproof += 1
        
        return newproof

Chain validation is an important part of the blockchain, it is used to validate weather tha blockchain is valid or not. There are two checks performed.

First check, for each block check if the previous hash field is equal to the hash of the previous block i.e. to verify the cryptographic link.

Second check, to check if the proof of work for each block is valid according to problem defined in proofofwork() function i.e. to check if the correct block is mined or not.

    def ischainvalid(self, chain):
        prevblock = chain[0]   # Initilized to Genesis block
        blockindex = 1         # Initilized to Next block

        while blockindex < len(chain):

            # First Check : To verify the cryptographic link
            
            currentblock = chain[blockindex]
            if currentblock['prevhash'] != self.hash(prevblock):
                return False

            # Second Check : To check if the correct block is mined or not

            prevproof = prevblock['proof']
            currentproof = currentblock['proof']
            op = hashlib.sha256(str(currentproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] != "00000":
                return True

            prevblock = currentblock
            blockindex += 1

        return True

Feel free to follow along the code provided along with mentioned comments for
better understanding of the project, if any issues feel free to reach me out.

Contributing

Contributions are welcome!
Please feel free to submit a Pull Request.

Owner
Vaibhaw
A passionate thinker, techno freak, comic lover, a curious computer engineering student. Machine Learning, Artificial Intelligence, Linux, Web Development.
Vaibhaw
A simple Python tool to help anyone use Liquidity Pools on the BitShares blockchain.

ACCOUNT AND ACTIVE KEY ARE NOT PERSISTENT, YOU WILL NEED TO ENTER THEM EACH TIME YOU LAUNCH THE APP (but not every transaction. that's a win). If / wh

Brendan Jensen 17 Jun 15, 2022
Repository detailing Choice Coin's Creation and Documentation

Choice Coin V1 This Repository provides code and documentation detailing Choice Coin V1, a utility token built on the Algorand Blockchain. Choice Coin

Choice Coin 245 Dec 29, 2022
Kyrie Eleison - The best and unique way to encrypt some data or a file safely

Encrypt your important data and files easily and safely with Kyrie Eleison.

Billy 39 Oct 27, 2022
Algorand-app - This tutorial is designed to get you started with Algorand development in a step by step process

Getting Started This tutorial is designed to get you started with Algorand devel

Connor 1 Jan 06, 2022
Get the SHA256 hash of any file with this Python Script

Hashfile-SHA256 A SHA256 hash verifying script, written in python. Report Bug Table of Contents About The Project Built With Getting Started Prerequis

Ethan Gallucci 1 Nov 01, 2021
wdepy: Decryption and Inspection for PGP WDE Disks

This is a small python tool to inspect and decrypt disk images encrypted with PGP Whole Disk Encryption (including the Symantec-branded versions like Symantec Drive Encryption). It takes advantage of

Brendan Dolan-Gavitt 17 Oct 07, 2022
Taishang Credential With Interactive Badges

结合数字徽章的交互式区块链证书 DApp 1 项目简介 DID 与 VC 一直是区块链研究的重要领域,也是区块链落地的重要基础,从「传统证书」到基于DID的VC证书是证书体系范式转移的重要第一步。 但是,在迈出第一步之后我们可以进行更加丰富的尝试,例如尝试将不可转移的徽章与可转移的权益与证书相结合,

1 Nov 07, 2021
A python implementation of our standard object-oriented encryption package, shipped with most apps.

Encryption Manager (python edition) VerseGroup's native encryption manager adapted for python applications. Function Generate new set of private and p

Verse Group LLC 2 Oct 30, 2022
An encryption format offering better security, performance and ease of use than PGP.

An encryption format offering better security, performance and ease of use than PGP. File a bug if you found anything where we are worse than our competition, and we will fix it.

27 Dec 25, 2022
A curated list of resources dedicated to reinforcement learning applied to cyber security.

Awesome Reinforcement Learning for Cyber Security A curated list of resources dedicated to reinforcement learning applied to cyber security. Note that

Kim Hammar 212 Jan 02, 2023
Microllect - Fully automated btc wallet hack,using advanced protocols

Microllect - Fully automated btc wallet hack,using advanced protocols

Arya kaghazkanani 40 Dec 17, 2022
Certifi: Python SSL Certificates

(Python Distribution) A carefully curated collection of Root Certificates for validating the trustworthiness of SSL certificates while verifying the identity of TLS hosts.

Certifi 608 Jan 02, 2023
Python Steganography data hiding in image

Python-Steganography Python Steganography data hiding in image data encryption and decryption im here you have to import stepic module 1.open CMD 2.ty

JehanKandy 10 Jul 13, 2022
An Etebase (EteSync 2.0) server so you can run your own.

Etebase - Encrypt Everything An Etebase (EteSync 2.0) server so you can run your own. Installation Requirements Etebase requires Python 3.7 or newer a

EteSync & Etebase 1.2k Dec 31, 2022
How to setup a multi-client ethereum Eth1-Eth2 merge testnet

Mergenet tutorial Let's set up a local eth1-eth2 merge testnet! Preparing the setup environment In this tutorial, we use a series of scripts to genera

Diederik Loerakker 24 Jun 17, 2022
Pogramme de chiffrement et déchiffrement césar d'un message en python3.

Chiffrement Cesar En Python3 Pogramme de chiffrement et déchiffrement césar d'un message en python3. Explication du chiffrement César avec complexité

Malik Makkes 1 Mar 26, 2022
This program can encrypt/ decrypt any string

Ceasar_cipher Hey this is J0ey, this program is a very basic Caesar cipher encoder/decoder. In order to use this program, you will need to have Python

1 Jan 11, 2022
A simple python program to sign text using either the RSA or ISRSAC algorithm with GUI built using tkinter library.

Digital Signatures using ISRSAC Algorithm A simple python program to sign text using either the RSA or ISRSAC algorithm with GUI built using tkinter l

Vasu Mandhanya 3 Nov 15, 2022
Dicoding Machine Learning for Expert Submission 1 - Predictive Analytics

Laporan Proyek Machine Learning - Azhar Rizki Zulma Domain Proyek Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai keuanga

Azhar Rizki Zulma 6 Jul 23, 2022
Image AES256 crypt-decrypt

Image AES256 crypt-decrypt

Damian Panek 37 Nov 09, 2021