Deep learning based page layout analysis

Overview

Deep Learning Based Page Layout Analyze

This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page images into different regions and recoginize them into different classes. A sementic segmentation model is trained to predict a pixel-wise probability map and a simple post-processing procedure is utilized to generate final detection bounding boxs and their corresponding labels and confidence scores. Here is what this code can do:

visual result

Requirements

This repository is mostly written in Python, so Python is essential to run the code. For now, only Python2 (Python2.7 is tested) is supported and it needs some minor modifications if you want to run this code on Python3.

The core of this repository is DeepLab_v2, which is a image semantic segmentation model. We use a TensorFlow implementation of DeepLab_v2 DeepLab-ResNet-TensorFlow written by DrSleep, so TensorFlow needs to be installed before running this code. We use TensorFlow v1.4 and it may need some slightly change if you are using other version of TensorFlow. Also, we need all the requirements from DeepLab-ResNet-TensorFlow.

  • Cython>=0.19.2
  • numpy>=1.7.1
  • matplotlib>=1.3.1
  • Pillow>=2.3.0
  • six>=1.1.0

Also Scikit-image is required for image processing.

  • scikit-image>=0.13.1

To install all the required python packages, you can just run

pip install -r requirements.txt

or for a local installation, run

pip install -U -r requirements.txt

Usage

The code is packaged into a Python function and a Python module with a main function, which will produce exactly the same final detection results. For simplifying the usage, all the parameters are fixed except for the number of classes and visual result flag. One can easily extend the function to accept the parameters that need to be altered.

First, you need to save all the images in a folder and all the images should be in 'jpg' format. Then, a output directory need to be specified to save all the output predictions that include the down-sampled images, probability maps, visualization results and a JSON file with final detection results. The output directory does not have to exist before running the code (if there isn't one, we will create one for you). Finally you can run this code by calling the function in a bash terminal or import the module in Python and either way will do.

Function

PageAnalyze.py is the good point to start with. Just call this function and magic will happen.

python PageAnalyze.py --img_dir=./test/test_images \
                      --out_dir=./test/test_outputs \
                      --num_class=2 \
                      --save=True

Module

example.py gives the easiest way to import the module and call the main function.

import sys
# Add the path of the great module and python sripts.
sys.path.append('utils/')

# Import the great module.
import page_analyze

# The image directory containing all the images need to be processed.
# All the images should be the '.jpg' format.
IMAGE_DIR = 'test/test_images/'

# The output directory saving the output masks and results.
OUTPUT_DIR = 'test/test_outputs/'

# Classes number: 2 or 4.
# 2 --- text / non-text: trained on CNKI data.
# 4 --- figure / table / equation / text: trained on POD data (beta).
CLASS_NUM = 2

# Calling the great function in the great module.
page_analyze.great_function(image_dir=IMAGE_DIR, \
	                        output_dir=OUTPUT_DIR, \
	                        class_num=CLASS_NUM, \
	                        save=True)

# The final detection results will be saved in a single JSON file.
import json
RESULTS = json.load(open(OUTPUT_DIR + 'results.json', 'r'))

Output

If the visual result flag is set to True, then the visualization results will be saved at output_dir/predictions/. To save the running time, the default value of this flag is False.

Final results will be coded into a single JSON file at output_dir/results.json. Here is the example of the JSON file.

{
	"3005": 
	{
		"confs": [0.5356797385620915, 0.913904087544255, 0.7526443014705883, 0.9095219564478454, 0.8951748322262306, 0.6817004971002486, 0.9001002744772497, 0.9337936032277651, 0.8377339456847807, 0.7026428593008852, 0.8779250071028856, 0.8281628004780167, 0.8653182372135079, 0.7315979265269327, 0.5775715633847122, 0.6177185356901381], 
		"labels": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2], 
		"bboxs": [[130, 219, 158, 477], [395, 347, 484, 1990], [543, 725, 714, 1605], [800, 257, 1068, 2082], [1137, 1209, 2007, 2168], [1175, 185, 1230, 429], [1268, 171, 1910, 1123], [1897, 164, 2316, 1123], [2055, 1209, 2986, 2165], [2364, 175, 2567, 1120], [2691, 171, 2942, 1123], [3038, 1213, 3272, 2165], [3052, 168, 3261, 1123], [2594, 563, 2694, 749], [2608, 1055, 2684, 1113], [2979, 1464, 3048, 2161]]
	}, 
	
	"3004": 
	{
		"confs": [0.630786120259585, 0.7335585214477949, 0.8283411346491016, 0.7394772139625081, 0.6203790052606408, 0.7930634196637656, 0.9062854529210855, 0.8209901351845086, 0.9105478240273018, 0.6283956118923438, 0.9496875863021265, 0.8075845380525092, 0.9290070507407969, 0.899121940386255, 0.9245526964953498], 
		"labels": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2], 
		"bboxs": [[996, 1297, 1054, 1581], [1037, 212, 1201, 1026], [1102, 1208, 1259, 2115], [1807, 143, 2163, 1102], [1988, 1293, 2043, 1574], [2094, 1317, 2245, 2016], [2272, 1191, 2385, 2142], [2437, 1191, 2491, 1742], [2529, 1180, 3265, 2149], [2728, 164, 2820, 1067], [2875, 140, 3258, 1112], [219, 164, 1026, 2135], [1211, 191, 1776, 1037], [1287, 1235, 1981, 2105], [2197, 277, 2683, 985]]
	},
	
} 

Descriptions

The pipeline of our model contains two parts: the semantic segmentation stage and the post-processing stage. We adopt DeepLab_v2 to preform a semantic segmentation procedure, and use the TensorFlow implementation DeepLab-ResNet-TensorFlow to train our semantic segmentation model. For post-processing part, we get the bounding box locations along with their confidence scores and labels by analysing the connected component on the probability map generated from our segmentation model.

Training

In order to train the segmentation model, we prepare the pixel-wise mask labels on CNKI dataset and POD dataset.

  • CNKI dataset contains total 14503 images with text / non-text annotations, and most of them are in Chinese language.

  • POD dataset contains 11333 images all in English with a four-class labeling which is figure / table / equation / text.

Noted that CNKI dataset is noisy because it is annotated by a software, but POD dataset has a lot less noise. Also, text are annotated as regions in CNKI dataset while each text line is labeled in POD dataset. Here are the examples of CNKI dataset and POD dataset.

data examples

For CNKI dataset and POD dataset, we train two DeepLab models separately. We initialize the network by the model pre-trained on MSCOCO. And each model was trained by 200k steps with batch size 5 and random scale 321*321 inputs. It took roughly 2 days to converge the model on a single GTX1080 GPU. During the training, all the other hyper paremeters we use are the default values in DeepLab-ResNet-TensorFlow. The mAPs on the training sets of two datasets are 0.909 and 0.837.

This repository does not contain the code for training in the reason that we want this repository keep an acceptable size (or else we need to pack the data as well). But we do put the trained models mdoel_cnki and mdoel_pod in the models folder for inference.

Testing

At inference time, there are four steps and each one is written in a Python module in the utils folder. Either the function or the module calls the page_analyze module which calls those four modules in turn.

  • Configuration module generates the image list file and configuration dictionary.

  • Pre-processing module re-scales (down-samples) large images and dump the scale JSON file. Due to the limit of GPU memory, we down-sample the image with height larger than 1000 pixels to 1000 and keep the aspect ratio.

  • Segmentation module is the core module of this code. It sets up a FIFO queue for all the input images and feeds them into the deep neural network. The probability maps generated by the DeepLab model will be saved in the output directory.

  • Post-Processing module reads the original images and generated probability masks ro get the bounding box locations and their labels and confidence scores. If the save flag is set to Ture, the detection results will be drew on the original images and saved in the output directory. The final results will be written in a single JSON file we have mentioned before.

Here are a simple demo of the detection pipline.

pipline demo

Running Time

We conduct some simple running time analysis on our server (14 cores E5-2680-v4*2 and 8GB GTX1080*2). Configuration module takes nearly no time and the rest of the modules running time is linear to the image number. So we run the code on 51 test images and compute the average time per image for each module. For GPU we only use one GTX1080 GPU and perform multi-processing on CPU.

pre_process inference post_process
CPU time 0.53s / 0.05s 3.98s 0.07s / 0.10s
GPU time - 0.27s -
  • For pre_process, a size 3000*2000 image is quite large for deep learning so we have to down-sample the input image (due to the limit of GPU memory) and this is the most time-consuming part. We took the down-sampled images as inputs and run the code again, and it only took 0.05s per image for the reason we don't need to re-sacle the input images.

  • For inference, it is a feed-forward precedure through the deep neural network, so the time gap between CPU and GPU is enormous. Noted that we only use one GTX1080, so it should be at least twice faster when running on a decent GPU like Titan X.

  • For post_process, connected component analysis is time-consuming, but suprisingly fast on this case. Also, there is a slightly difference between 2 classification and 4 classification which is 0.07s versus 0.10s

In general, now it takes us about a second to process one image. But if the sizes of the input images are smaller, it is likely to achieve 4 to 5 FPS, that is 4 or 5 images per second, with the help of a nice GPU of course.

Problem

We analyze the weakness of this algorithm by 51 test images and the main problem is from the post-processing procedure. Since the DeepLab model achieves 0.909 mAP, there is not a lot space to improve on the deep learning model. We categorize the problem into three types.

problem example

  • Fragmentary text regions (especially in captions). This is because the CNKI data annotated all the captions as text regions, and these extremely small text regions are very close to the non-text region (like a figure or a table) which can harm the training of deep neural network. So at the inference time, the network may predict some separable text regions on the captions causing the bad results.

  • Inseparable non-text regions (causing overlaping between regions). There is only two classes (text / non-text) in CNKI dataset, so the network can not tell the difference between figures and tables. Sometimes, some different but close table and figure regions may be predicted as one non-text region together which may cause overlaping with other regions (which is very bad for the recognition procedure afterwards).

  • Poor results on 4 classification (different data distribution). Since the 4 classes model is trained on POD dataset which has different distribution compared with CNKI dataset (language, layout and different text regions). So there is inevitable some bad results on CNKI test sets when we try to use the model trained on POD dataset. (We have already beaten the second place on POD competition by training the figure / table / equation model and using basically the same post processing procedure.)

Todo

  • Improve the post processing procedure to get a better result.

  • Modify the code to run on Python3.

Statements

  • Sorry we can not make the source code public yet.

  • For more details, please refer to our paper:

@inproceedings{li2018deeplayout,

title={DeepLayout: A Semantic Segmentation Approach to Page Layout Analysis},

author={Li, Yixin and Zou, Yajun and Ma, Jinwen},

booktitle={International Conference on Intelligent Computing},

pages={266--277},

year={2018},

organization={Springer}

}

Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight'

SSTDNet Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight' using pytorch. This code is work for general object detecti

HotaekHan 84 Jan 05, 2022
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels"

Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels" Please refer to htt

Ke Sun 1 Feb 14, 2022
TextField: Learning A Deep Direction Field for Irregular Scene Text Detection (TIP 2019)

TextField: Learning A Deep Direction Field for Irregular Scene Text Detection Introduction The code and trained models of: TextField: Learning A Deep

Yukang Wang 101 Dec 12, 2022
Automatically remove the mosaics in images and videos, or add mosaics to them.

Automatically remove the mosaics in images and videos, or add mosaics to them.

Hypo 1.4k Dec 30, 2022
OCR powered screen-capture tool to capture information instead of images

NormCap OCR powered screen-capture tool to capture information instead of images. Links: Repo | PyPi | Releases | Changelog | FAQs Content: Quickstart

575 Dec 31, 2022
第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)第一名;仅采用densenet识别图中文字

OCR 第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)冠军 模型结果 该比赛计算每一个条目的f1score,取所有条目的平均,具体计算方式在这里。这里的计算方式不对一句话里的相同文字重复计算,故f1score比提交的最终结果低: - train val f1score 0

尹畅 441 Dec 22, 2022
[EMNLP 2021] Improving and Simplifying Pattern Exploiting Training

ADAPET This repository contains the official code for the paper: "Improving and Simplifying Pattern Exploiting Training". The model improves and simpl

Rakesh R Menon 138 Dec 26, 2022
An Implementation of the seglink alogrithm in paper Detecting Oriented Text in Natural Images by Linking Segments

Tips: A more recent scene text detection algorithm: PixelLink, has been implemented here: https://github.com/ZJULearning/pixel_link Contents: Introduc

dengdan 484 Dec 07, 2022
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.

Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. This is the official Roboflow python package that interfaces with the Roboflow API.

Roboflow 52 Dec 23, 2022
Pure Javascript OCR for more than 100 Languages 📖🎉🖥

Version 2 is now available and under development in the master branch, read a story about v2: Why I refactor tesseract.js v2? Check the support/1.x br

Project Naptha 29.2k Jan 05, 2023
Assignment work with webcam

work with webcam : Press key 1 to use emojy on your face Press key 2 to use lip and eye on your face Press key 3 to checkered your face Press key 4 to

Hanane Kheirandish 2 May 31, 2022
Python Computer Vision Aim Bot for Roblox's Phantom Forces

Python-Phantom-Forces-Aim-Bot Python Computer Vision Aim Bot for Roblox's Phanto

drag0ngam3s 2 Jul 11, 2022
PAGE XML format collection for document image page content and more

PAGE-XML PAGE XML format collection for document image page content and more For an introduction, please see the following publication: http://www.pri

PRImA Research Lab 46 Nov 14, 2022
DouZero is a reinforcement learning framework for DouDizhu - 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

Kwai 3.1k Jan 05, 2023
Repository collecting all the submodules for the new PyTorch-based OCR System.

OCRopus3 is being replaced by OCRopus4, which is a rewrite using PyTorch 1.7; release should be soonish. Please check github.com/tmbdev/ocropus for up

NVIDIA Research Projects 138 Dec 09, 2022
Indonesian ID Card OCR using tesseract OCR

KTP OCR Indonesian ID Card OCR using tesseract OCR KTP OCR is python-flask with tesseract web application to convert Indonesian ID Card to text / JSON

Revan Muhammad Dafa 5 Dec 06, 2021
Face Detection with DLIB

Face Detection with DLIB In this project, we have detected our face with dlib and opencv libraries. Setup This Project Install DLIB & OpenCV You can i

Can 2 Jan 16, 2022
Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.

EasyOCR Ready-to-use OCR with 80+ languages supported including Chinese, Japanese, Korean and Thai. What's new 1 February 2021 - Version 1.2.3 Add set

Jaided AI 16.7k Jan 03, 2023