Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Overview

Handwritten Line Text Recognition using Deep Learning with Tensorflow

Description

Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train. More read this Medium Post

Why Deep Learning?

Why Deep Learning

Deep Learning self extracts features with a deep neural networks and classify itself. Compare to traditional Algorithms it performance increase with Amount of Data.

Basic Intuition on How it Works.

Step_wise_detail

  • First Use Convolutional Recurrent Neural Network to extract the important features from the handwritten line text Image.
  • The output before CNN FC layer (512x100x8) is passed to the BLSTM which is for sequence dependency and time-sequence operations.
  • Then CTC LOSS Alex Graves is used to train the RNN which eliminate the Alignment problem in Handwritten, since handwritten have different alignment of every writers. We just gave the what is written in the image (Ground Truth Text) and BLSTM output, then it calculates loss simply as -log("gtText"); aim to minimize negative maximum likelihood path.
  • Finally CTC finds out the possible paths from the given labels. Loss is given by for (X,Y) pair is: Ctc_Loss
  • Finally CTC Decode is used to decode the output during Prediction.

Detail Project Workflow

Architecture of Model

  • Project consists of Three steps:
    1. Multi-scale feature Extraction --> Convolutional Neural Network 7 Layers
    2. Sequence Labeling (BLSTM-CTC) --> Recurrent Neural Network (2 layers of LSTM) with CTC
    3. Transcription --> Decoding the output of the RNN (CTC decode) DetailModelArchitecture

Requirements

  1. Tensorflow 1.8.0
  2. Flask
  3. Numpy
  4. OpenCv 3
  5. Spell Checker autocorrect >=0.3.0 pip install autocorrect

Dataset Used

  • IAM dataset download from here
  • Only needed the lines images and lines.txt (ASCII).
  • Place the downloaded files inside data directory
The Trained model is available and download from this link. The trained model CER=8.32% and trained on IAM dataset with some additional created dataset.

To Train the model from scratch

$ python main.py --train

To validate the model

$ python main.py --validate

To Prediction

$ python main.py

Run in Web with Flask

$ python upload.py
Validation character error rate of saved model: 8.654728%
Python: 3.6.4 
Tensorflow: 1.8.0
Init with stored values from ../model/snapshot-24
Without Correction clothed leaf by leaf with the dioappoistmest
With Correction clothed leaf by leaf with the dioappoistmest

Prediction output on IAM Test Data PredictionOutput

Prediction output on Self Test Data PredictionOutput

See the project Devnagari Handwritten Word Recognition with Deep Learning for more insights.

Further Improvement

  • Using MDLSTM to recognize whole paragraph at once Scan, Attend and Read: End-to-End Handwritten Paragraph Recognition with MDLSTM Attention
  • Line segementation can be added for full paragraph text recognition. For line segmentation you can use A* path planning algorithm or CNN model to seperate paragraph into lines.
  • Better Image preprocessing such as: reduce backgoround noise to handle real time image more accurately.
  • Better Decoding approach to improve accuracy. Some of the CTC Decoder found here

Feel Free to improve this project with pull Request.

This is part of my last semester project of Computer Engineering From Tribhuvan University. July 2019

Owner
sushant097
Machine Learning Engineer | Computer Vision Developer. Working in the field of Research, development of Machine learning and Computer Vision .
sushant097
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022
ocroseg - This is a deep learning model for page layout analysis / segmentation.

ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by

NVIDIA Research Projects 71 Dec 06, 2022
The official code for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates".

SpeechDrivesTemplates The official repo for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates". [arxiv

Qian Shenhan 53 Dec 23, 2022
aardio的opencv库

opencv_aardio dll库下载地址:https://github.com/xuncv/opencv-plugin/releases import cv2 img = cv2.imread("./images/Lena.jpg",1) img = cv2.medianBlur(img,5)

71 Dec 31, 2022
Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

RaVAEn The RaVÆn system We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variationa

SpaceML 35 Jan 05, 2023
Awesome anomaly detection in medical images

A curated list of awesome anomaly detection works in medical imaging, inspired by the other awesome-* initiatives.

Kang Zhou 57 Dec 19, 2022
Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

81 Jan 01, 2023
Ddddocr - 通用验证码识别OCR pypi版

带带弟弟OCR通用验证码识别SDK免费开源版 今天ddddocr又更新啦! 当前版本为1.3.1 想必很多做验证码的新手,一定头疼碰到点选类型的图像,做样本费时

Sml2h3 4.4k Dec 31, 2022
A simple python program to record security cam footage by detecting a face and body of a person in the frame.

SecurityCam A simple python program to record security cam footage by detecting a face and body of a person in the frame. This code was created by me,

1 Nov 08, 2021
Text page dewarping using a "cubic sheet" model

page_dewarp Page dewarping and thresholding using a "cubic sheet" model - see full writeup at https://mzucker.github.io/2016/08/15/page-dewarping.html

Matt Zucker 1.2k Dec 29, 2022
governance proposal to make fei redeemable for eth

Feil Proposal 🌲 Abstract Migrate all ETH from Fei protocol-controlled value into Yearn ETH Vault. Allow redemptions of outstanding FEI for yvETH. At

13 Mar 31, 2022
Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector

CRAFT: Character-Region Awareness For Text detection Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |

188 Dec 28, 2022
A curated list of promising OCR resources

Call for contributor(paper summary,dataset generation,algorithm implementation and any other useful resources) awesome-ocr A curated list of promising

wanghaisheng 1.6k Jan 04, 2023
Python Computer Vision Aim Bot for Roblox's Phantom Forces

Python-Phantom-Forces-Aim-Bot Python Computer Vision Aim Bot for Roblox's Phanto

drag0ngam3s 2 Jul 11, 2022
~1000 book pages + OpenCV + python = page regions identified as paragraphs, lines, images, captions, etc.

cosc428-structor I had an open-ended Computer Vision assignment to complete, and an out-of-copyright book that I wanted to turn into an ebook. Convent

Chad Oliver 45 Dec 06, 2022
Single Shot Text Detector with Regional Attention

Single Shot Text Detector with Regional Attention Introduction SSTD is initially described in our ICCV 2017 spotlight paper. A third-party implementat

Pan He 215 Dec 07, 2022
Um simples projeto para fazer o reconhecimento do captcha usado pelo jogo bombcrypto

CaptchaSolver - LEIA ISSO 😓 Para iniciar o codigo: pip install -r requirements.txt python captcha_solver.py Se você deseja pegar ver o resultado das

Kawanderson 50 Mar 21, 2022
一款基于Qt与OpenCV的仿真数字示波器

一款基于Qt与OpenCV的仿真数字示波器

郭赟 4 Nov 02, 2022
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022