~1000 book pages + OpenCV + python = page regions identified as paragraphs, lines, images, captions, etc.

Overview

cosc428-structor

I had an open-ended Computer Vision assignment to complete, and an out-of-copyright book that I wanted to turn into an ebook. Conventional OCR engines like Tesseract weren't able to accurately recognise the page structure, which led to many transcription errors. If I could tell Tesseract to ignore certain regions (like images or repeated headers), then I could greatly reduce the number of errors in the resulting ebook. Thus: for my assignment, I wrote a program that takes an image and uses computer vision magick to determine the page's structure. So far, my program can detect and locate:

  • lines of text,
  • paragraphs,
  • section titles,
  • images and their associated captions,
  • boilerplate like page numbers, and
  • chapter titles.

Ain't it grand?

Dependencies

The project is written in Python 2.7.3 and uses the cv2 library for interacting with openCV. It also uses numpy for some of the mathematical operations. On windows, the best way to get these dependencies is to install the Python(x,y) suite (https://code.google.com/p/pythonxy/), which combines python with a customisable set of scientific computing libraries.

Program Structure

The program's root is main.py, but this simply iterates through images in a folder and constructs a Page instance from each image. Thus, the real work happens in page.py.

page.py contains a few utility methods and the Page class. The constructor calls the appropriate methods in order to determine the logical structure of the page. This structure is stored in three objects: self.margin, self.content, and self.boilerplate (which contains such non-content text objects as the page number and header).

The getBuildingBlocks method is responsible for finding words, grouping words into textual lines, discarding marginal noise, and fitting a Margin instance around the remaining lines. Most of these tasks are preformed by calling other functions.

The self.content object is found by passing the set of lines to the Content() constructor. This uses a state machine to group lines into figures, paragraphs, section titles, etc. The Content class, along with a class for each content type, is found in content.py.

The other files can generally be ignored when trying to understand the program; they are largely just convenience classes which represent page elements (such as points, geometric lines, words, text lines, and boxes), as well as supporting tools such as the Stopwatch.

How to Run the Code

Run main.py using the python interpreter. This will process each page in ./images, and for each page a series of 'snapshot' images will be displayed in order to illustrate the algorithm. To show only the final result for each image, set showSteps in main.py to False.

You might also like...
Basic functions manipulating images using the OpenCV library

OpenCV Basic functions manipulating images using the OpenCV library. Reading Ima

Some bits of javascript to transcribe scanned pages using PageXML

nashi (nasḫī) Some bits of javascript to transcribe scanned pages using PageXML. Both ltr and rtl languages are supported. Try it! But wait, there's m

scantailor - Scan Tailor is an interactive post-processing tool for scanned pages.
scantailor - Scan Tailor is an interactive post-processing tool for scanned pages.

Scan Tailor - scantailor.org This project is no longer maintained, and has not been maintained for a while. About Scan Tailor is an interactive post-p

Text page dewarping using a "cubic sheet" model

page_dewarp Page dewarping and thresholding using a "cubic sheet" model - see full writeup at https://mzucker.github.io/2016/08/15/page-dewarping.html

Deep learning based page layout analysis
Deep learning based page layout analysis

Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page

ocroseg - This is a deep learning model for page layout analysis / segmentation.
ocroseg - This is a deep learning model for page layout analysis / segmentation.

ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by

a deep learning model for page layout analysis / segmentation.
a deep learning model for page layout analysis / segmentation.

OCR Segmentation a deep learning model for page layout analysis / segmentation. dependencies tensorflow1.8 python3 dataset: uw3-framed-lines-degraded-

OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Comments
  • The getBuildingBlocks

    The getBuildingBlocks

    Hello, Recently, I have some task about the document layout analysis. The description in "README.md" is very consistent with my mission. But when I try to run the code as README.md: How to Run the Code, there just some red line in each dobule word and have no resault of the detect and locate of "line of text", "paragraphs", "section titles" , etc. So I want to know what has happend to the code. Very thankful

    opened by lvbohui 3
Releases(v1.0)
Owner
Chad Oliver
Chad Oliver
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
Course material for the Multi-agents and computer graphics course

TC2008B Course material for the Multi-agents and computer graphics course. Setup instructions Strongly recommend using a custom conda environment. Ins

16 Dec 13, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 05, 2023
A curated list of papers, code and resources pertaining to image composition

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

BCMI 391 Dec 30, 2022
Histogram specification using openCV in python .

histogram specification using openCV in python . Have to input miu and sigma to draw gausssian distribution which will be used to map the input image . Example input can be miu = 128 sigma = 30

Tamzid hasan 6 Nov 17, 2021
Handwritten_Text_Recognition

Deep Learning framework for Line-level Handwritten Text Recognition Short presentation of our project Introduction Installation 2.a Install conda envi

24 Jul 15, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Papers, Datasets, Algorithms, SOTA for STR. Long-time Maintaining

Scene Text Recognition Recommendations Everythin about Scene Text Recognition SOTA • Papers • Datasets • Code Contents 1. Papers 2. Datasets 2.1 Synth

Deep Learning and Vision Computing Lab, SCUT 197 Jan 05, 2023
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
An interactive interface for using OpenCV's GrabCut algorithm for image segmentation.

Interactive GrabCut An interactive interface for using OpenCV's GrabCut algorithm for image segmentation. Setup Install dependencies: pip install nump

Jason Y. Zhang 16 Oct 10, 2022
Assignment work with webcam

work with webcam : Press key 1 to use emojy on your face Press key 2 to use lip and eye on your face Press key 3 to checkered your face Press key 4 to

Hanane Kheirandish 2 May 31, 2022
1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

SIIM-COVID19-Detection Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge. 1.INSTALLATION Ubuntu 18.04.5 LTS CUD

Nguyen Ba Dung 170 Dec 21, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
Fun program to overlay a mask to yourself using a webcam

Superhero Mask Overlay Description Simple project made for fun. It consists of placing a mask (a PNG image with transparent background) on your face.

KB Kwan 10 Dec 01, 2022
Table Extraction Tool

Tree Structure - Table Extraction Fonduer has been successfully extended to perform information extraction from richly formatted data such as tables.

HazyResearch 88 Jun 02, 2022
Toolbox for OCR post-correction

Ochre Ochre is a toolbox for OCR post-correction. Please note that this software is experimental and very much a work in progress! Overview of OCR pos

National Library of the Netherlands / Research 117 Nov 10, 2022
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022