Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

Related tags

Computer VisionRaVAEn
Overview

RaVAEn

Project sample The RaVÆn system
We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs) with the specific purpose of on-board deployment. It flags changed areas to prioritise for downlink, shortening the response time. We show that the proposed method outperforms pixel-wise baselines and we test it on resource-limited hardware. We also release the annotated dataset of extreme events. Work conducted at the FDL Europe 2021.

NeurIPS workshop papervideo from AI+HADR'21Quick Colab Example


Unsupervised Change Detection of Extreme Events Using ML On-Board

Flooding event example

Abstract: In this paper, we introduce RaVAEn, a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs) with the specific purpose of on-board deployment. Applications such as disaster management enormously benefit from the rapid availability of satellite observations. Traditionally, data analysis is performed on the ground after all data is transferred - downlinked - to a ground station. Constraint on the downlink capabilities therefore affects any downstream application. In contrast, RaVAEn pre-processes the sampled data directly on the satellite and flags changed areas to prioritise for downlink, shortening the response time. We verified the efficacy of our system on a dataset composed of time series of catastrophic events - which we plan to release alongside this publication - demonstrating that RaVAEn outperforms pixel-wise baselines. Finally we tested our approach on resource-limited hardware for assessing computational and memory limitations.

Dataset

The full annotated dataset used for evaluation is hosted on Google Drive here. It contains 5 locations for each of the Landslide, Hurricane, Fire events and 4 locations for Floods events. For more details see the paper (we use the Sentinel-2 mission, level L1C data).

Map of the events

For dataset inspection use the prepared Colab Dataset Exploration demo .

Code examples

Install

# This will create a ravaen_env conda environment:
make requirements
conda activate ravaen_env
# Add these to open the prepared notebooks:
conda install nb_conda
jupyter notebook
# This will open an interactive notebook in your browser where you can navigate to the training or inference demo

Inference

To start using our model for inference, it's best to start with the prepared Colab Inference demo , which downloads our annotated dataset and evaluates a pre-trained model on a selected event type.

# Check possible parameters with:
!python3 -m scripts.evaluate_model --help 

# Example evaluation script used for the paper results for "small size" VAE model (remeber to adjust paths to the dataset and to the saved model checkpoints)
./bash/eval_run_papers_v3_VAE_128_D_small.sh

Training

For a fast demo on how to train these models on a custom folder of locations, check the Training demo as that presents an easy entry point to this repository. To reproduce the same training process as reported in the paper, you will need to download the whole WorldFloods dataset (see here) and prepare the same folder structure as we chose for the validation datasets.

# Check possible parameters with:
!python3 -m scripts.train_model --help

# Run the same training script used for the paper results for "small size" VAE model (remember to adjust the paths to the training datasets)
./bash/train_run_papers_v3_VAE_128_small_D.sh

Generality of the solution

Hurricane event example

Name "RaVAEn"

Our project is named after the two ravens in Norse mythology who are helping spirits of the god Odin and also highlights the usage of a Variational Auto-Encoder (VAE) as the main model:

Two ravens sit on his (Odin’s) shoulders and whisper all the news which they see and hear into his ear; they are called Huginn and Muninn. He sends them out in the morning to fly around the whole world, and by breakfast they are back again. Thus, he finds out many new things and this is why he is called ‘raven-god’ (hrafnaguð). (source)

Citation

If you find RaVAEn useful in your research, please consider citing the following paper:

@inproceedings{ravaen2021,
  title = {Unsupervised {Change} {Detection} of {Extreme} {Events} {Using} {ML} {On}-{Board}},
  url = {http://arxiv.org/abs/2111.02995},
  booktitle = {Artificial {Intelligence} for {Humanitarian} {Assistance} and {Disaster} {Response} {Workshop}, 35th {Conference} on {Neural} {Information} {Processing} {Systems} ({NeurIPS} 2021), {Vancouver}, {Canada}},
  author = {Růžička, Vít and Vaughan, Anna and De Martini, Daniele and Fulton, James and Salvatelli, Valentina and Bridges, Chris and Mateo-Garcia, Gonzalo and Zantedeschi, Valentina},
  month = nov,
  year = {2021},
  note = {arXiv: 2111.02995}
}
Owner
SpaceML
SpaceML
PyNeuro is designed to connect NeuroSky's MindWave EEG device to Python and provide Callback functionality to provide data to your application in real time.

PyNeuro PyNeuro is designed to connect NeuroSky's MindWave EEG device to Python and provide Callback functionality to provide data to your application

Zach Wang 4 Sep 30, 2021
PAGE XML format collection for document image page content and more

PAGE-XML PAGE XML format collection for document image page content and more For an introduction, please see the following publication: http://www.pri

PRImA Research Lab 38 Dec 06, 2021
Learn computer graphics by writing GPU shaders!

This repo contains a selection of projects designed to help you learn the basics of computer graphics. We'll be writing shaders to render interactive two-dimensional and three-dimensional scenes.

Eric Zhang 1.7k Jan 23, 2022
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

89 Jan 01, 2022
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search

This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of

Zj Li 178 Jan 10, 2022
Text to QR-CODE

QR CODE GENERATO USING PYTHON Author : RAFIK BOUDALIA. Installation Use the package manager pip to install foobar. pip install pyqrcode Usage from tki

Rafik Boudalia 2 Oct 12, 2021
An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicing

ZATCA (Fatoora) QR-Code Implementation An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicin

TheAwiteb 20 Jan 18, 2022
⛓ marc is a small, but flexible Markov chain generator

About marc (markov chain) is a small, but flexible Markov chain generator. Usage marc is easy to use. To build a MarkovChain pass the object a sequenc

Max Humber 38 May 27, 2021
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 58 Jan 12, 2022
An application of high resolution GANs to dewarp images of perturbed documents

Docuwarp This project is focused on dewarping document images through the usage of pix2pixHD, a GAN that is useful for general image to image translat

Thomas Huang 83 Jan 13, 2022
Textboxes : Image Text Detection Model : python package (tensorflow)

shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl

Jayne Shin (신재인) 90 Sep 08, 2021
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 69 Jan 10, 2022
Program created with opencv that allows you to automatically count your repetitions on several fitness exercises.

Virtual partner of gym Description Program created with opencv that allows you to automatically count your repetitions on several fitness exercises li

1 Jan 03, 2022
Détection de créneaux de vaccination disponibles pour l'outil ViteMaDose

Vite Ma Dose ! est un outil open source de CovidTracker permettant de détecter les rendez-vous disponibles dans votre département afin de vous faire v

CovidTracker 241 Feb 01, 2022
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 347 Dec 20, 2021
Neural search engine for AI papers

Papers search Neural search engine for ML papers. Demo Usage is simple: input an abstract, get the matching papers. The following demo also showcases

Giancarlo Fissore 36 Jan 09, 2022
Document Image Dewarping

Document image dewarping using text-lines and line Segments Abstract Conventional text-line based document dewarping methods have problems when handli

Taeho Kil 239 Dec 19, 2021
This is a real life mario project using python and mediapipe

real-life-mario This is a real life mario project using python and mediapipe How to run to run this just run - realMario.py file requirements This req

Programminghut 28 Jan 18, 2022
Multi-choice answer sheet correction system using computer vision with opencv & python.

Multi choice answer correction 🔴 5 answer sheet samples with a specific solution for detecting answers and sheet correction. 🔴 By running the soluti

Reza Firouzi 6 Oct 30, 2021
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 222 Jan 18, 2022