Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector

Overview

CRAFT: Character-Region Awareness For Text detection

Downloads PyPI version Conda version CI

Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |

Overview

PyTorch implementation for CRAFT text detector that effectively detect text area by exploring each character region and affinity between characters. The bounding box of texts are obtained by simply finding minimum bounding rectangles on binary map after thresholding character region and affinity scores.

teaser

Getting started

Installation

  • Install using conda for Linux, Mac and Windows (preferred):
conda install -c fcakyon craft-text-detector
  • Install using pip for Linux and Mac:
pip install craft-text-detector

Basic Usage

# import Craft class
from craft_text_detector import Craft

# set image path and export folder directory
image_path = 'figures/idcard.png'
output_dir = 'outputs/'

# create a craft instance
craft = Craft(output_dir=output_dir, crop_type="poly", cuda=False)

# apply craft text detection and export detected regions to output directory
prediction_result = craft.detect_text(image_path)

# unload models from ram/gpu
craft.unload_craftnet_model()
craft.unload_refinenet_model()

Advanced Usage

# import craft functions
from craft_text_detector import (
    read_image,
    load_craftnet_model,
    load_refinenet_model,
    get_prediction,
    export_detected_regions,
    export_extra_results,
    empty_cuda_cache
)

# set image path and export folder directory
image_path = 'figures/idcard.png'
output_dir = 'outputs/'

# read image
image = read_image(image_path)

# load models
refine_net = load_refinenet_model(cuda=True)
craft_net = load_craftnet_model(cuda=True)

# perform prediction
prediction_result = get_prediction(
    image=image,
    craft_net=craft_net,
    refine_net=refine_net,
    text_threshold=0.7,
    link_threshold=0.4,
    low_text=0.4,
    cuda=True,
    long_size=1280
)

# export detected text regions
exported_file_paths = export_detected_regions(
    image_path=image_path,
    image=image,
    regions=prediction_result["boxes"],
    output_dir=output_dir,
    rectify=True
)

# export heatmap, detection points, box visualization
export_extra_results(
    image_path=image_path,
    image=image,
    regions=prediction_result["boxes"],
    heatmaps=prediction_result["heatmaps"],
    output_dir=output_dir
)

# unload models from gpu
empty_cuda_cache()
You might also like...
TextBoxes++: A Single-Shot Oriented Scene Text Detector

TextBoxes++: A Single-Shot Oriented Scene Text Detector Introduction This is an application for scene text detection (TextBoxes++) and recognition (CR

TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit

Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

This can be use to convert text in a file to handwritten text.

TextToHandwriting This can be used to convert text to handwriting. Clone this project or download the code. Run TextToImage.py give the filename of th

python ocr using tesseract/ with EAST opencv detector

pytextractor python ocr using tesseract/ with EAST opencv text detector Uses the EAST opencv detector defined here with pytesseract to extract text(de

Augmenting Anchors by the Detector Itself
Augmenting Anchors by the Detector Itself

Augmenting Anchors by the Detector Itself Introduction It is difficult to determine the scale and aspect ratio of anchors for anchor-based object dete

Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications
Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications

Security camera running OpenCV for object and motion detection. The camera will send email with image of any objects it detects. It also runs a server that provides web interface with live stream video.

Comments
  • Add more options for detect_text method

    Add more options for detect_text method

    Hi, sometime I don't want detect_text from file, I want detect_text directly from image in ndarray format, that will save more cost of I/O time. So I contribute this. Thanks for your work

    opened by ducviet00 2
  • Enable package to load model from local path

    Enable package to load model from local path

    When using the pypi package it should be allowed to use a model from a local path, because loading it from a remote location removes the control over what model is currently used. And might also result in pull limits being reached.

    enhancement 
    opened by TanjaBayer 1
  • Fix #8 - Fixing cuda issues in basic usage text detection

    Fix #8 - Fixing cuda issues in basic usage text detection

    Fixing issue #8

    In this quick-fix I referenced craft_net as a global variable. If this is not an acceptable workaround, then consider reorganizing the structure of the code.

    Have a nice day :)

    opened by gaborpelesz 1
  • accept customized weights path when loading models

    accept customized weights path when loading models

    path for the weight file can be specified by:

    load_craftnet_model(weight_path="path/to/weight")
    
    load_refinenet_model(weight_path="path/to/weight")
    
    opened by fcakyon 0
Releases(0.4.3)
  • 0.4.3(May 9, 2022)

    What's Changed

    • Enable package to load model from local path by @TanjaBayer in https://github.com/fcakyon/craft-text-detector/pull/53

    New Contributors

    • @TanjaBayer made their first contribution in https://github.com/fcakyon/craft-text-detector/pull/53

    Full Changelog: https://github.com/fcakyon/craft-text-detector/compare/0.4.2...0.4.3

    Source code(tar.gz)
    Source code(zip)
  • 0.4.2(Jan 6, 2022)

    What's Changed

    • fix opencv version by @fcakyon in https://github.com/fcakyon/craft-text-detector/pull/48

    Full Changelog: https://github.com/fcakyon/craft-text-detector/compare/0.4.1...0.4.2

    Source code(tar.gz)
    Source code(zip)
  • 0.4.1(Dec 20, 2021)

    What's Changed

    • fix crop export by @fcakyon in https://github.com/fcakyon/craft-text-detector/pull/45

    Full Changelog: https://github.com/fcakyon/craft-text-detector/compare/0.4.0...0.4.1

    Source code(tar.gz)
    Source code(zip)
  • 0.4.0(Jul 30, 2021)

  • 0.3.5(May 12, 2021)

  • 0.3.4(Apr 7, 2021)

    • add support for PIL and numpy images in addition to filepath. https://github.com/fcakyon/craft-text-detector/pull/28
    from PIL import Image
    import numpy
    
    # can be filepath, PIL image or numpy array
    image = 'figures/idcard.png' 
    image = Image.open("figures/idcard.png")
    image = numpy.array(Image.open("figures/idcard.png"))
    
    # apply craft text detection
    prediction_result = craft.detect_text(image)
    Source code(tar.gz)
    Source code(zip)
  • 0.3.3(Mar 2, 2021)

  • 0.3.2(Mar 2, 2021)

    path for the weight file can be specified by:

    load_craftnet_model(weight_path="path/to/weight")
    
    load_refinenet_model(weight_path="path/to/weight")
    
    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(May 14, 2020)

    • updated basic usage for better device handling, now Craft instance should be created before calling detect_text:
    # import Craft class
    from craft_text_detector import Craft
    
    # set image path and export folder directory
    image_path = 'figures/idcard.png'
    output_dir = 'outputs/'
    
    # create a craft instance
    craft = Craft(output_dir=output_dir, crop_type="poly", cuda=False)
    
    # apply craft text detection and export detected regions to output directory
    prediction_result = craft.detect_text(image_path)
    
    # unload models from ram/gpu
    craft.unload_craftnet_model()
    craft.unload_refinenet_model()
    
    • some internal naming and styling changes
    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(May 10, 2020)

  • v0.2.0a(Apr 22, 2020)

  • v0.2.0(Apr 22, 2020)

Owner
Senior Machine Learning Engineer, METU & Bilkent alum.
An OCR evaluation tool

dinglehopper dinglehopper is an OCR evaluation tool and reads ALTO, PAGE and text files. It compares a ground truth (GT) document page with a OCR resu

QURATOR-SPK 40 Dec 20, 2022
Crop regions in napari manually

napari-crop Crop regions in napari manually Usage Create a new shapes layer to annotate the region you would like to crop: Use the rectangle tool to a

Robert Haase 4 Sep 29, 2022
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
python ocr using tesseract/ with EAST opencv detector

pytextractor python ocr using tesseract/ with EAST opencv text detector Uses the EAST opencv detector defined here with pytesseract to extract text(de

Danny Crasto 38 Dec 05, 2022
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022
Hiiii this is the Spanish for Linux and win 10 and in the near future the english version of PortScan my new tool on which you can see what ports are Open only with the IP adress.

PortScanner-by-IIT PortScanner es una herramienta programada en Python3. Como su nombre indica esta herramienta escanea los primeros 150 puertos de re

5 Sep 19, 2022
A tool to make dumpy among us GIFS

Among Us Dumpy Gif Maker Made by ThatOneCalculator & Pixer415 With help from Telk, karl-police, and auguwu! Please credit this repository when you use

Kainoa Kanter 535 Jan 07, 2023
QED-C: The Quantum Economic Development Consortium provides these computer programs and software for use in the fields of quantum science and engineering.

Application-Oriented Performance Benchmarks for Quantum Computing This repository contains a collection of prototypical application- or algorithm-cent

SRI International 67 Nov 30, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
A python programusing Tkinter graphics library to randomize questions and answers contained in text files

RaffleOfQuestions Um programa simples em python, utilizando a biblioteca gráfica Tkinter para randomizar perguntas e respostas contidas em arquivos de

Gabriel Ferreira Rodrigues 1 Dec 16, 2021
Visual Attention based OCR

Attention-OCR Authours: Qi Guo and Yuntian Deng Visual Attention based OCR. The model first runs a sliding CNN on the image (images are resized to hei

Yuntian Deng 1.1k Jan 02, 2023
Text to QR-CODE

QR CODE GENERATO USING PYTHON Author : RAFIK BOUDALIA. Installation Use the package manager pip to install foobar. pip install pyqrcode Usage from tki

Rafik Boudalia 2 Oct 13, 2021
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.

A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.

tooraj taraz 3 Feb 10, 2022
OCR of Chicago 1909 Renumbering Plan

Requirements: Python 3 (probably at least 3.4) pipenv (pip3 install pipenv) tesseract (brew install tesseract, at least if you have a mac and homebrew

ted whalen 2 Nov 21, 2021
Deep LearningImage Captcha 2

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 117 Dec 28, 2022
Connect Aseprite to Blender for painting pixelart textures in real time

Pribambase Pribambase is a small tool that connects Aseprite and Blender, to allow painting with instant viewport feedback and all functionality of ex

117 Jan 03, 2023
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023
Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words.

Handwritten-Text-Recognition Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. T

27 Jan 08, 2023