Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Overview

Active Learning with the Nvidia TLT

Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

In this tutorial, we will show you how you can do active learning for object detection with the Nvidia Transfer Learning Toolkit. The task will be object detection of apples in a plantation setting. Accurately detecting and counting fruits is a critical step towards automating harvesting processes. Furthermore, fruit counting can be used to project expected yield and hence to detect low yield years early on.

The structure of the tutorial is as follows:

  1. Prerequisites
    1. Set up Lightly
    2. Set up Nvidia TLT
    3. Data
  2. Active Learning
    1. Initial Sampling
    2. Training and Inference
    3. Active Learning Step
    4. Re-training

To get started, clone this repository to your machine and change the directory.

git clone https://github.com/lightly-ai/NvidiaTLTActiveLearning.git
cd NvidiaTLTActiveLearning

1 Prerequisites

For this tutorial, you require Python 3.6 or higher. You also need to install lightly, numpy and argparse.

pip install -r requirements.txt

1.1 Set up Lightly for Active Learning

To set up lightly for active learning, head to the Lightly Platform and create a free account by logging in. Make sure to get your token by clicking on your e-mail address and selecting "Preferences". You will need the token for the rest of this tutorial.

1.2 Set up Nvidia TLT

To install the Nvidia Transfer Learning Toolkit, follow these instructions. If you want to use custom scripts for training and inference, you can skip this part.

Setting up Nvidia TLT can be done in a few minutes and consists of the following steps:

  1. Install Docker.
  2. Install Nvidia GPU driver v455.xx or above.
  3. Install nvidia docker2.
  4. Get an NGC account and API key.

To make all relevant directories accessible to the Nvidia TLT, you need to mount the current working directory and the yolo_v4/specs directory to the Nvidia TLT docker. You can do so with the provided mount.py script.

python mount.py

Next, you need to specify all training configurations. The Nvidia TLT expects all training configurations in a .txt file which is stored in the yolo_v4/specs/ directory. For the purpose of this tutorial we provide an example in yolo_v4_minneapple.txt. The most important differences to the example script provided by Nvidia are:

  • Anchor Shapes: We made the anchor boxes smaller since the largest bounding boxes in our dataset are only approximately 50 pixels wide.
  • Augmentation Config: We set the output width and height of the augmentations to 704 and 1280 respectively. This corresponds to the shape of our images.
  • Target Class Mapping: For transfer learning, we made a target class mapping from car to apple. This means that every time the model would now predict a car, it predicts an apple instead.

1.3 Data

In this tutorial, we will use the MinneApple fruit detection dataset. It consists of 670 training images of apple trees, annotated for detection and segmentation. The dataset contains images of trees with red and green apples.

Note: The Nvidia TLT expects the data and labels in the KITTI format. This means they expect one folder containing the images and one folder containing the annotations. The name of an image and its corresponding annotation file must be the same apart from the file extension. You can find the MinneApple dataset converted to this format attached to the first release of this tutorial. Alternatively, you can download the files from the official link and convert the labels yourself.

Create a data/ directory, move the downloaded minneapple.zip file there, and unzip it

cd data/
unzip minneapple.zip
cd ..

Here's an example of how the converted labels look like. Note how we use the label car instead of apple because of the target class mapping we had defined in section 1.2.

Car 0. 0 0. 1.0 228.0 6.0 241.0 0. 0. 0. 0. 0. 0. 0.
Car 0. 0 0. 5.0 228.0 28.0 249.0 0. 0. 0. 0. 0. 0. 0.
Car 0. 0 0. 30.0 238.0 46.0 256.0 0. 0. 0. 0. 0. 0. 0.
Car 0. 0 0. 37.0 214.0 58.0 234.0 0. 0. 0. 0. 0. 0. 0.
Car 0. 0 0. 82.0 261.0 104.0 281.0 0. 0. 0. 0. 0. 0. 0.
Car 0. 0 0. 65.0 283.0 82.0 301.0 0. 0. 0. 0. 0. 0. 0.
Car 0. 0 0. 82.0 284.0 116.0 317.0 0. 0. 0. 0. 0. 0. 0.
Car 0. 0 0. 111.0 274.0 142.0 306.0 0. 0. 0. 0. 0. 0. 0.
Car 0. 0 0. 113.0 308.0 131.0 331.0 0. 0. 0. 0. 0. 0. 0.

2 Active Learning

Now that the setup is complete, you can start the active learning loop. In general, the active learning loop will consist of the following steps:

  1. Initial sampling: Get an initial set of images to annotate and train on.
  2. Training and inference: Train on the labeled data and make predictions on all data.
  3. Active learning query: Use the predictions to get the next set of images to annotate, go to 2.

We will walk you through all three steps in this tutorial.

To do active learning with Lightly, you first need to upload your dataset to the platform. The command lightly-magic trains a self-supervised model to get good image representations and then uploads the images along with the image representations to the platform. If you want to skip training, you can set trainer.max_epochs=0. In the following command, replace MY_TOKEN with your token from the platform.

You can also upload thumbnails or even just metadata about the images. See this link for more information.

lightly-magic \
    input_dir=./data/raw/images \
    trainer.max_epochs=0 \
    loader.num_workers=8 \
    collate.input_size=512 \
    new_dataset_name="MinneApple" \
    token=MY_TOKEN

The above command will display the id of your dataset. You will need this later in the tutorial.

Once the upload has finished, you can visually explore your dataset in the Lightly Platform.

2.1 Initial Sampling

Now, let's select an initial batch of images which for annotation and training.

Lightly offers different sampling strategies, the most prominent ones being CORESET and RANDOM sampling. RANDOM sampling will preserve the underlying distribution of your dataset well while CORESET maximizes the heterogeneity of your dataset. While exploring our dataset in the Lightly Platform, we noticed many different clusters therefore we choose CORESET sampling to make sure that every cluster is represented in the training data.

Use the active_learning_query.py script to make an initial selection:

python active_learning_query.py \
    --token YOUR_TOKEN \
    --dataset_id YOUR_DATASET_ID \
    --new_tag_name 'initial-selection' \
    --n_samples 100 \
    --method CORESET

The above script roughly performs the following steps:

It creates an API client to communicate with the Lightly API.

# create an api client
client = ApiWorkflowClient(
    token=YOUR_TOKEN,
    dataset_id=YOUR_DATASET_ID,
)

Then, it creates an active learning agent which serves as an interface to do active learning.

# create an active learning agent
al_agent = ActiveLearningAgent(client)

Finally, it creates a sampling configuration, makes an active learning query, and puts the annotated images into the data/train directory.

# make an active learning query
cofnig = SamplerConfig(
    n_samples=100,
    method=SamplingMethod.CORESET,
    name='initial-selection',
)
al_agent.query(config)

# simulate annotation step by copying the data to the data/train directory 
oracle.annotate_images(al_agent.added_set)

The query will automatically create a new tag with the name initial-selection in the Lightly Platform.

You can verify that the number of annotated images is correct like this:

ls data/train/images | wc -l
ls data/train/labels | wc -l

2.2 Training and Inference

Now that we have our annotated training data, let's train an object detection model on it and see how well it works! Use the Nvidia Transfer Learning Toolkit to train a YOLOv4 object detector from the command line. The cool thing about transfer learning is that you don't have to train a model from scratch and therefore require fewer annotated images to get good results.

Start by downloading a pre-trained object detection model from the Nvidia registry.

mkdir -p ./yolo_v4/pretrained_resnet18
ngc registry model download-version nvidia/tlt_pretrained_object_detection:resnet18 \
    --dest ./yolo_v4/pretrained_resnet18

Finetuning the object detector on the sampled training data is as simple as the following command. Make sure to replace YOUR_KEY with the API token you get from your Nvidia account.

mkdir -p $PWD/yolo_v4/experiment_dir_unpruned
tlt yolo_v4 train \
    -e /workspace/tlt-experiments/yolo_v4/specs/yolo_v4_minneapple.txt \
    -r /workspace/tlt-experiments/yolo_v4/experiment_dir_unpruned \
    --gpus 1 \
    -k YOUR_KEY

Now that you have finetuned the object detector on your dataset, you can do inference to see how well it works.

Doing inference on the whole dataset has the advantage that you can easily figure out for which images the model performs poorly or has a lot of uncertainties.

tlt yolo_v4 inference \
    -i /workspace/tlt-experiments/data/raw/images/ \
    -e /workspace/tlt-experiments/yolo_v4/specs/yolo_v4_minneapple.txt \
    -m /workspace/tlt-experiments/yolo_v4/experiment_dir_unpruned/weights/yolov4_resnet18_epoch_050.tlt \
    -o /workspace/tlt-experiments/infer_images \
    -l /workspace/tlt-experiments/infer_labels \
    -k MY_KEY

Below you can see two example images after training. It's evident that the model does not perform well on the unlabeled image. Therefore, it makes sense to add more samples to the training dataset.

2.3 Active Learning Step

You can use the inferences from the previous step to determine which images cause the model problems. With Lightly, you can easily select these images while at the same time making sure that your training dataset is not flooded with duplicates.

This section is about how to select the images which complete your training dataset. You can use the active_learning_query.py script again but this time you have to indicate that there already exists a set of preselected images and point the script to where the inferences are stored.

Use CORAL instead of CORESET as a sampling method. CORAL simultaneously maximizes the diversity and the sum of the active learning scores in the sampled data.

python active_learning_query.py \
    --token YOUR_TOKEN \
    --dataset_id YOUR_DATASET_ID \
    --preselected_tag_name 'initial-selection' \
    --new_tag_name 'al-iteration-1' \
    --n_samples 200 \
    --method CORAL

The script works very similarly to before but with one significant difference: This time, all the inferred labels are loaded and used to calculate an active learning score for each sample.

# create a scorer to calculate active learning scores based on model outputs
scorer = ScorerObjectDetection(model_outputs)

The rest of the script is almost the same as for the initial selection:

# create an api client
client = ApiWorkflowClient(
    token=YOUR_TOKEN,
    dataset_id=YOUR_DATASET_ID,
)

# create an active learning agent and set the preselected tag
al_agent = ActiveLearningAgent(
    client,
    preselected_tag_name='initial-selection',
)

# create a sampler configuration
config = SamplerConfig(
    n_samples=200,
    method=SamplingMethod.CORAL,
    name='al-iteration-1',
)

# make an active learning query
al_agent.query(config, scorer)

# simulate the annotation step
oracle.annotate_images(al_agent.added_set)

As before, we can check the number of images in the training set:

ls data/train/images | wc -l
ls data/train/labels | wc -l

2.4 Re-training

You can re-train our object detector on the new dataset to get an even better model. For this, you can use the same command as before. If you want to continue training from the last checkpoint, make sure to replace the pretrain_model_path in the specs file by a resume_model_path:

tlt yolo_v4 train \
    -e /workspace/tlt-experiments/yolo_v4/specs/yolo_v4_minneapple.txt \
    -r /workspace/tlt-experiments/yolo_v4/experiment_dir_unpruned \
    --gpus 1 \
    -k MY_KEY

If you're still unhappy with the performance after re-training the model, you can repeat steps 2.2 and 2.3 and then re-train the model again.

You might also like...
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usecases. Backed by the Linux Foundation.

AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Comments
  • Missing line in yolo_v4_mineapple.txt

    Missing line in yolo_v4_mineapple.txt

    Hello there!

    First of all, I just want to say tanks for your well explained demo, but I had some problems following it as I ran into some error, that I just didn't understand. After some search and research I managed to found a missing line into the yolo_v4_mineapple.txt, that should be put after the line 65 (output_height:1280): output_channel: 3.

    So, I just thought I'll leave this here, for posterity. And... now I will close the issue. Thanks!

    opened by Funderburger 0
  • Rework tutorial based on feedback

    Rework tutorial based on feedback

    Rework tutorial based on feedback

    Closes #691.

    • Addresses most of the issues mentioned.
    • Does not yet include a comparison to a random selection as this would take on benchmarking character which is not what this tutorial is intended for.
    opened by philippmwirth 0
  • Advantage over training with all data instead of samples

    Advantage over training with all data instead of samples

    Hi, I just wanna know what is the difference between training with all the 600 samples and training 100 samples first, 200, 300, .... What does active learning step does? it really select the best images or what? I didn't get clear for me.

    Thanks in advance

    opened by leo2105 1
Releases(v1.0-alpha)
Owner
Lightly
Lightly
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022