Deep learning models for change detection of remote sensing images

Overview

Change Detection Models (Remote Sensing)

Python library with Neural Networks for Change Detection based on PyTorch.

โšก โšก โšก I am trying to build this project, if you are interested, don't hesitate to join us!

๐Ÿ‘ฏ ๐Ÿ‘ฏ ๐Ÿ‘ฏ Contact me at [email protected] or pull a request directly.


This project is inspired by segmentation_models.pytorch and built based on it. ๐Ÿ˜„

๐ŸŒฑ How to use

Please refer to local_test.py temporarily.


๐Ÿ”ญ Models

Architectures

Encoders

The following is a list of supported encoders in the CDP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (encoder_name and encoder_weights parameters).

ResNet
Encoder Weights Params, M
resnet18 imagenet / ssl / swsl 11M
resnet34 imagenet 21M
resnet50 imagenet / ssl / swsl 23M
resnet101 imagenet 42M
resnet152 imagenet 58M
ResNeXt
Encoder Weights Params, M
resnext50_32x4d imagenet / ssl / swsl 22M
resnext101_32x4d ssl / swsl 42M
resnext101_32x8d imagenet / instagram / ssl / swsl 86M
resnext101_32x16d instagram / ssl / swsl 191M
resnext101_32x32d instagram 466M
resnext101_32x48d instagram 826M
ResNeSt
Encoder Weights Params, M
timm-resnest14d imagenet 8M
timm-resnest26d imagenet 15M
timm-resnest50d imagenet 25M
timm-resnest101e imagenet 46M
timm-resnest200e imagenet 68M
timm-resnest269e imagenet 108M
timm-resnest50d_4s2x40d imagenet 28M
timm-resnest50d_1s4x24d imagenet 23M
Res2Ne(X)t
Encoder Weights Params, M
timm-res2net50_26w_4s imagenet 23M
timm-res2net101_26w_4s imagenet 43M
timm-res2net50_26w_6s imagenet 35M
timm-res2net50_26w_8s imagenet 46M
timm-res2net50_48w_2s imagenet 23M
timm-res2net50_14w_8s imagenet 23M
timm-res2next50 imagenet 22M
RegNet(x/y)
Encoder Weights Params, M
timm-regnetx_002 imagenet 2M
timm-regnetx_004 imagenet 4M
timm-regnetx_006 imagenet 5M
timm-regnetx_008 imagenet 6M
timm-regnetx_016 imagenet 8M
timm-regnetx_032 imagenet 14M
timm-regnetx_040 imagenet 20M
timm-regnetx_064 imagenet 24M
timm-regnetx_080 imagenet 37M
timm-regnetx_120 imagenet 43M
timm-regnetx_160 imagenet 52M
timm-regnetx_320 imagenet 105M
timm-regnety_002 imagenet 2M
timm-regnety_004 imagenet 3M
timm-regnety_006 imagenet 5M
timm-regnety_008 imagenet 5M
timm-regnety_016 imagenet 10M
timm-regnety_032 imagenet 17M
timm-regnety_040 imagenet 19M
timm-regnety_064 imagenet 29M
timm-regnety_080 imagenet 37M
timm-regnety_120 imagenet 49M
timm-regnety_160 imagenet 80M
timm-regnety_320 imagenet 141M
GERNet
Encoder Weights Params, M
timm-gernet_s imagenet 6M
timm-gernet_m imagenet 18M
timm-gernet_l imagenet 28M
SE-Net
Encoder Weights Params, M
senet154 imagenet 113M
se_resnet50 imagenet 26M
se_resnet101 imagenet 47M
se_resnet152 imagenet 64M
se_resnext50_32x4d imagenet 25M
se_resnext101_32x4d imagenet 46M
SK-ResNe(X)t
Encoder Weights Params, M
timm-skresnet18 imagenet 11M
timm-skresnet34 imagenet 21M
timm-skresnext50_32x4d imagenet 25M
DenseNet
Encoder Weights Params, M
densenet121 imagenet 6M
densenet169 imagenet 12M
densenet201 imagenet 18M
densenet161 imagenet 26M
Inception
Encoder Weights Params, M
inceptionresnetv2 imagenet / imagenet+background 54M
inceptionv4 imagenet / imagenet+background 41M
xception imagenet 22M
EfficientNet
Encoder Weights Params, M
efficientnet-b0 imagenet 4M
efficientnet-b1 imagenet 6M
efficientnet-b2 imagenet 7M
efficientnet-b3 imagenet 10M
efficientnet-b4 imagenet 17M
efficientnet-b5 imagenet 28M
efficientnet-b6 imagenet 40M
efficientnet-b7 imagenet 63M
timm-efficientnet-b0 imagenet / advprop / noisy-student 4M
timm-efficientnet-b1 imagenet / advprop / noisy-student 6M
timm-efficientnet-b2 imagenet / advprop / noisy-student 7M
timm-efficientnet-b3 imagenet / advprop / noisy-student 10M
timm-efficientnet-b4 imagenet / advprop / noisy-student 17M
timm-efficientnet-b5 imagenet / advprop / noisy-student 28M
timm-efficientnet-b6 imagenet / advprop / noisy-student 40M
timm-efficientnet-b7 imagenet / advprop / noisy-student 63M
timm-efficientnet-b8 imagenet / advprop 84M
timm-efficientnet-l2 noisy-student 474M
timm-efficientnet-lite0 imagenet 4M
timm-efficientnet-lite1 imagenet 5M
timm-efficientnet-lite2 imagenet 6M
timm-efficientnet-lite3 imagenet 8M
timm-efficientnet-lite4 imagenet 13M
MobileNet
Encoder Weights Params, M
mobilenet_v2 imagenet 2M
timm-mobilenetv3_large_075 imagenet 1.78M
timm-mobilenetv3_large_100 imagenet 2.97M
timm-mobilenetv3_large_minimal_100 imagenet 1.41M
timm-mobilenetv3_small_075 imagenet 0.57M
timm-mobilenetv3_small_100 imagenet 0.93M
timm-mobilenetv3_small_minimal_100 imagenet 0.43M
DPN
Encoder Weights Params, M
dpn68 imagenet 11M
dpn68b imagenet+5k 11M
dpn92 imagenet+5k 34M
dpn98 imagenet 58M
dpn107 imagenet+5k 84M
dpn131 imagenet 76M
VGG
Encoder Weights Params, M
vgg11 imagenet 9M
vgg11_bn imagenet 9M
vgg13 imagenet 9M
vgg13_bn imagenet 9M
vgg16 imagenet 14M
vgg16_bn imagenet 14M
vgg19 imagenet 20M
vgg19_bn imagenet 20M

๐Ÿšš Dataset

๐Ÿ“ƒ Citing

@misc{likyoocdp:2021,
  Author = {Kaiyu Li, Fulin Sun},
  Title = {Change Detection Pytorch},
  Year = {2021},
  Publisher = {GitHub},
  Journal = {GitHub repository},
  Howpublished = {\url{https://github.com/likyoo/change_detection.pytorch}}
}

๐Ÿ“š Reference

Comments
  • Suggest to loosen the dependency on albumentations

    Suggest to loosen the dependency on albumentations

    Hi, your project change_detection.pytorch(commit id: 0a86d51b31276d9c413798ab3fb332889f02d8aa) requires "albumentations==1.0.3" in its dependency. After analyzing the source code, we found that the following versions of albumentations can also be suitable, i.e., albumentations 1.0.0, 1.0.1, 1.0.2, since all functions that you directly (8 APIs: albumentations.core.transforms_interface.BasicTransform.init, albumentations.augmentations.geometric.resize.Resize.init, albumentations.core.composition.Compose.init, albumentations.pytorch.transforms.ToTensorV2.init, albumentations.augmentations.crops.functional.random_crop, albumentations.core.transforms_interface.DualTransform.init, albumentations.augmentations.crops.transforms.RandomCrop.init, albumentations.augmentations.transforms.Normalize.init) or indirectly (propagate to 11 albumentations's internal APIs and 0 outsider APIs) used from the package have not been changed in these versions, thus not affecting your usage.

    Therefore, we believe that it is quite safe to loose your dependency on albumentations from "albumentations==1.0.3" to "albumentations>=1.0.0,<=1.0.3". This will improve the applicability of change_detection.pytorch and reduce the possibility of any further dependency conflict with other projects.

    May I pull a request to further loosen the dependency on albumentations?

    By the way, could you please tell us whether such an automatic tool for dependency analysis may be potentially helpful for maintaining dependencies easier during your development?

    opened by Agnes-U 3
  • dimensional error

    dimensional error

    ๆ‚จๅฅฝ๏ผŒๆˆ‘ๅœจ่ฟ่กŒlocal_test.pyๆ–‡ไปถๆ—ถๅ‡บ็Žฐไบ†้”™่ฏฏ๏ผŒ่€Œๆˆ‘ไธ€็›ด่งฃๅ†ณไธไบ†๏ผŒ้”™่ฏฏๅฆ‚ไธ‹๏ผš RuntimeError: Expected 4-dimensional input for 4-dimensional weight [64, 3, 7, 7], but got 3-dimensional input of size [3, 256, 256] instead ๆˆ‘ๆƒณ็Ÿฅ้“[6,3,7,7]ไปฃ่กจ็š„ๆ˜ฏไป€ไนˆ๏ผŸ ่ฟ™ไธช้”™่ฏฏๆ˜ฏๅ‘็”Ÿๅœจvaled้ƒจๅˆ†๏ผŒๅœจๆ‰ง่กŒepoch1ๆ—ถtrainๅฏไปฅๆญฃๅธธ่ฏปๅ–ๅ›พ็‰‡ๅนถ่ฟ่กŒ๏ผŒไฝ†ๅˆฐvaledๅฐฑๆŠฅ้”™ไบ†๏ผŒๅธŒๆœ›่ƒฝ่Žทๅพ—ๆ‚จ็š„ๅปบ่ฎฎใ€‚

    opened by 18339185538 0
  • Evaluation with different thresholds give the same results

    Evaluation with different thresholds give the same results

    This piece of code :

    for x in np.arange(0.6, 0.9, 0.1):
        print('Eval with TH:', x)
        metrics = [
            cdp.utils.metrics.Fscore(activation='argmax2d', threshold=x),
            cdp.utils.metrics.Precision(activation='argmax2d', threshold=x),
            cdp.utils.metrics.Recall(activation='argmax2d', threshold=x),
        ]
    
        valid_epoch = cdp.utils.train.ValidEpoch(
            model,
            loss=loss,
            metrics=metrics,
            device=DEVICE,
            verbose=True,
        )
    
        valid_logs = valid_epoch.run(valid_loader)
        print(valid_logs)
    

    Give me the following result:

    Eval with TH: 0.6
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:12<00:00,  6.98it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.0870812193864016, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    Eval with TH: 0.7
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:12<00:00,  6.99it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.08708121913835626, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    Eval with TH: 0.7999999999999999
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:11<00:00,  7.02it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.08708121978843793, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    opened by mikel-brostrom 0
  • Load trained model weigths

    Load trained model weigths

    Hi @likyoo ,

    I study with yoru repo for my project.I have been added to new features to your repo.I'll share it with you when I'm done.

    But I have a significant question;

    How can I load weigths after training operation?

    opened by ozanpkr 1
  • How to test on new images?

    How to test on new images?

    Dear @likyoo thanks for your open source project. I have trained models and saved the best model. Now, how can I test model on new images (not validation)

    opened by manapshymyr-OB 0
Releases(v0.1.0)
Owner
Kaiyu Li
CV & RS & ML Sys
Kaiyu Li
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning โ€œStudy hard what interests you the most in the most undisciplined, irreverent and original manner possible.โ€ โ€• Richard

Amit Kapoor 1.4k Dec 22, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [ๆ‘˜่ฆ] ๅœจ่ฟ™ๆฌกไฝœไธšไธญๆˆ‘ไปฌๆๅ‡บไบ†ไธ€็งๆ–ฐ็š„ Hash Function โ€”โ€” SHA-RNNใ€‚ๅ…ถไปฅๆตท็ปต็ป“ๆž„ไธบๅŸบ็ก€๏ผŒ่žๅˆไบ†ๆทท

Houde Qian 5 May 15, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022