(under submission) Bayesian Integration of a Generative Prior for Image Restoration

Overview

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration

Authors: Majed El Helou, and Sabine Süsstrunk

Python 3.7 pytorch 1.1.0 CUDA 10.1

{Note: paper under submission}

BIGPrior pipeline

The figure below illustrates the BIGPrior pipeline, with a generative-network inversion for the learned prior.

[Paper]

Abstract: Image restoration, such as denoising, inpainting, colorization, etc. encompasses fundamental image processing tasks that have been addressed with different algorithms and deep learning methods. Classical image restoration algorithms leverage a variety of priors, either implicitly or explicitly. Their priors are hand-designed and their corresponding weights are heuristically assigned. Thus, deep learning methods often produce superior image restoration quality. Deep networks are, however, capable of strong and hardly-predictable hallucinations of the data to be restored. Networks jointly and implicitly learn to be faithful to the observed data while learning an image prior, and the separation of original data and hallucinated data downstream is then not possible. This limits their wide-spread adoption in image restoration applications. Furthermore, it is often the hallucinated part that is victim to degradation-model overfitting.

We present an approach with decoupled network-prior based hallucination and data fidelity terms. We refer to our framework as the Bayesian Integration of a Generative Prior (BIGPrior). Our BIGPrior method is rooted in a Bayesian restoration framework, and tightly connected to classical restoration methods. In fact, our approach can be viewed as a generalization of a large family of classical restoration algorithms. We leverage a recent network inversion method to extract image prior information from a generative network. We show on image colorization, inpainting, and denoising that our framework consistently improves the prior results through good integration of data fidelity. Our method, though partly reliant on the quality of the generative network inversion, is competitive with state-of-the-art supervised and task-specific restoration methods. It also provides an additional metric that sets forth the degree of prior reliance per pixel. Indeed, the per pixel contributions of the decoupled data fidelity and prior terms are readily available in our proposed framework.

Key take-aways: our paper presents a learning-based restoration framework that forms a generalization of various families of classical methods. It is both tightly connected with Bayesian estimation upon which it builds, and also to classical dictionary methods. Our BIGPrior makes the explicit integration of learned-network priors possible, notably a generative-network prior. Its biggest advantage is that, by decoupling data fidelity and prior hallucination, it structurally provides a per pixel fusion metric that determines the contribution of each. This can be important both for end users and for various downstream applications. We hope this work will foster future learning methods with clearly decoupled network hallucinations, both for interpretability, reliability, and to safeguard against the hazards of black-box restoration.

Structure overview

All code is in the code directory, and input data are in the data folder. The net_data directory stores the network weights per epoch (along with many other trackers and all experiment parameters), it uses an automated index incrementation strategy on top of the experiment name for avoiding over-writing. We generate a lot of intermediate data for the different experiments, and along with the final outputs, these are written in inter_data.

Data setup

The needed data are already stored under data, if you want to repeat our experiments with different datasets we added a help README under data/lsun/ explaining how to pre-process the lsun data.

Generative inversion

The generative inversion we use is based on mGAN but we do some modifications to their code, which is why we have our own version in this repository.

(1) You need to download the pre-trained generative networks (we use PGGAN), and put the pretrain folder inside code/mganprior/models/. You can download them from the original repo, or mGAN's, or from our link right here.

(2) (recommended) You might face some bugs with the perceptual vgg-based loss due to caching, if you run parallel experiments or if you run on remote servers. We recommend you cache the pretrained model. To do this, first download vgg model vgg16-397923af.pth and paste it inside cache/torch/checkpoints/, then before starting an experiment run:

export XDG_CACHE_HOME=cache/

(3) We compiled the commands for all experiments in the bash file runall_mGAN.sh, you can find the templates inside to rerun each experiment.

Training

The train_cnn.sh bash compiles the commands to retrain all our experiments, for instance for colorization:

python code/train.py --experiment col_bedroom --lr 0.01 --batch_size 8 --backbone D --phi_weight 1e-5

the experiment name is parsed in 2 to determine the task and the dataset, the remaining args control the network or training parameters. All are detailed in code/train.py.

If you retrain multiple times for a given experiment, every run is saved with an incremented ID starting from 0, and the corresponding parameters are also saved as OURargs.txt next to the network checkpoints.

Testing

The test_cnn.sh bash compiles the commands to test all our experiments, for instance for colorization:

python code/train.py --experiment col_bedroom --test_model 1 --test True --test_epoch 24

where the test_model argument selects the ID of the already-trained experiment. The arguments of the chosen experiments are also saved under inter_data/{experiment}/OURoutput/OURargs.txt because, unlike network weights, the image outputs get over-written with every new run. This is because their computation is fast but they take a lot of storage.

Note: our pretrained models are already available within this repo under net_data (epoch 25 only, i.e. ID 24), so if you want to test without retraining it can be done directly.

Results visualization

We group all results processing, visualization, quantitative assessment, also including our correlation analysis figure, in one comprehensive notebook. It contains a large number of control parameters to obtain all the different table results, and more.

Citation

@article{elhelou2020bigprior,
    title   = {{BIGPrior}: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration},
    author  = {El Helou, Majed and S\"usstrunk, Sabine},
    journal = {arXiv preprint arXiv:2011.01406},
    year    = {2020}
}
Owner
Majed El Helou
CS PhD student, EPFL
Majed El Helou
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022