(under submission) Bayesian Integration of a Generative Prior for Image Restoration

Overview

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration

Authors: Majed El Helou, and Sabine Süsstrunk

Python 3.7 pytorch 1.1.0 CUDA 10.1

{Note: paper under submission}

BIGPrior pipeline

The figure below illustrates the BIGPrior pipeline, with a generative-network inversion for the learned prior.

[Paper]

Abstract: Image restoration, such as denoising, inpainting, colorization, etc. encompasses fundamental image processing tasks that have been addressed with different algorithms and deep learning methods. Classical image restoration algorithms leverage a variety of priors, either implicitly or explicitly. Their priors are hand-designed and their corresponding weights are heuristically assigned. Thus, deep learning methods often produce superior image restoration quality. Deep networks are, however, capable of strong and hardly-predictable hallucinations of the data to be restored. Networks jointly and implicitly learn to be faithful to the observed data while learning an image prior, and the separation of original data and hallucinated data downstream is then not possible. This limits their wide-spread adoption in image restoration applications. Furthermore, it is often the hallucinated part that is victim to degradation-model overfitting.

We present an approach with decoupled network-prior based hallucination and data fidelity terms. We refer to our framework as the Bayesian Integration of a Generative Prior (BIGPrior). Our BIGPrior method is rooted in a Bayesian restoration framework, and tightly connected to classical restoration methods. In fact, our approach can be viewed as a generalization of a large family of classical restoration algorithms. We leverage a recent network inversion method to extract image prior information from a generative network. We show on image colorization, inpainting, and denoising that our framework consistently improves the prior results through good integration of data fidelity. Our method, though partly reliant on the quality of the generative network inversion, is competitive with state-of-the-art supervised and task-specific restoration methods. It also provides an additional metric that sets forth the degree of prior reliance per pixel. Indeed, the per pixel contributions of the decoupled data fidelity and prior terms are readily available in our proposed framework.

Key take-aways: our paper presents a learning-based restoration framework that forms a generalization of various families of classical methods. It is both tightly connected with Bayesian estimation upon which it builds, and also to classical dictionary methods. Our BIGPrior makes the explicit integration of learned-network priors possible, notably a generative-network prior. Its biggest advantage is that, by decoupling data fidelity and prior hallucination, it structurally provides a per pixel fusion metric that determines the contribution of each. This can be important both for end users and for various downstream applications. We hope this work will foster future learning methods with clearly decoupled network hallucinations, both for interpretability, reliability, and to safeguard against the hazards of black-box restoration.

Structure overview

All code is in the code directory, and input data are in the data folder. The net_data directory stores the network weights per epoch (along with many other trackers and all experiment parameters), it uses an automated index incrementation strategy on top of the experiment name for avoiding over-writing. We generate a lot of intermediate data for the different experiments, and along with the final outputs, these are written in inter_data.

Data setup

The needed data are already stored under data, if you want to repeat our experiments with different datasets we added a help README under data/lsun/ explaining how to pre-process the lsun data.

Generative inversion

The generative inversion we use is based on mGAN but we do some modifications to their code, which is why we have our own version in this repository.

(1) You need to download the pre-trained generative networks (we use PGGAN), and put the pretrain folder inside code/mganprior/models/. You can download them from the original repo, or mGAN's, or from our link right here.

(2) (recommended) You might face some bugs with the perceptual vgg-based loss due to caching, if you run parallel experiments or if you run on remote servers. We recommend you cache the pretrained model. To do this, first download vgg model vgg16-397923af.pth and paste it inside cache/torch/checkpoints/, then before starting an experiment run:

export XDG_CACHE_HOME=cache/

(3) We compiled the commands for all experiments in the bash file runall_mGAN.sh, you can find the templates inside to rerun each experiment.

Training

The train_cnn.sh bash compiles the commands to retrain all our experiments, for instance for colorization:

python code/train.py --experiment col_bedroom --lr 0.01 --batch_size 8 --backbone D --phi_weight 1e-5

the experiment name is parsed in 2 to determine the task and the dataset, the remaining args control the network or training parameters. All are detailed in code/train.py.

If you retrain multiple times for a given experiment, every run is saved with an incremented ID starting from 0, and the corresponding parameters are also saved as OURargs.txt next to the network checkpoints.

Testing

The test_cnn.sh bash compiles the commands to test all our experiments, for instance for colorization:

python code/train.py --experiment col_bedroom --test_model 1 --test True --test_epoch 24

where the test_model argument selects the ID of the already-trained experiment. The arguments of the chosen experiments are also saved under inter_data/{experiment}/OURoutput/OURargs.txt because, unlike network weights, the image outputs get over-written with every new run. This is because their computation is fast but they take a lot of storage.

Note: our pretrained models are already available within this repo under net_data (epoch 25 only, i.e. ID 24), so if you want to test without retraining it can be done directly.

Results visualization

We group all results processing, visualization, quantitative assessment, also including our correlation analysis figure, in one comprehensive notebook. It contains a large number of control parameters to obtain all the different table results, and more.

Citation

@article{elhelou2020bigprior,
    title   = {{BIGPrior}: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration},
    author  = {El Helou, Majed and S\"usstrunk, Sabine},
    journal = {arXiv preprint arXiv:2011.01406},
    year    = {2020}
}
Owner
Majed El Helou
CS PhD student, EPFL
Majed El Helou
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023