Crypto Stats and Tweets Data Pipeline using Airflow

Overview

Crypto Stats and Tweets Data Pipeline using Airflow

Introduction

Project Overview

This project was brought upon through Udacity's nanodegree program.

For the capstone project within the nanodegree, the ultimate goal is to build a data pipeline that uses the technologies and applications covered in the the program.

With the recent rise of crypto currency interests and the evolution of crypto twitter into the media spotlight, revolving my capstone project around these two areas seemed like a good idea.

The ultimate goal of this project is to create both crypto statistics and crypto tweets datasets that can be used in downstream applications.

That goal was accomplished through this project. However, I have further goals for this project, which will be discussed later.

Project Requirements

At least 2 data sources

  • twitter.com accessed through snscrape tweets libary
  • coingecko public API resulting in crypto currency statistical data starting in 2015.

More than 1 million lines of data.

  • The snscrape_tweets_hist dataset has over 1.5 million rows
  • The coin_stats_hist has over 250k rows.

At least two data sources/formats (csv, api, json)

  • Stored in S3 (mkgpublic)
    • mkgpublic/capstone/tweets/tweets.parquet
    • mkgpublic/capstone/crypto/cg_hourly.csv

Data Ingestion Process

Tweets

The original data ingestion process ran into few snafus. As I decided to use the twitter API to get the tweets side of the data at first; however, due to limitations within the twitter API, I couldn't get more than 1000 tweets per call.

Thus, I decided to use the snscrape tweets python library instead, which provided a much easier method to get a ton of tweets in a reasonable amount of time.

Through using the snscrape tweets python library, the tweets were gathered running a library function.

The tweets were than stored in a MongoDB database as an intermediary storage solution.

Data was continuously ingested using this process until enough tweets about various crypto currencies was gathered.

After storing the tweets in MongoDB the tweets were then pulled from the MongoDB database, stored in a pandas dataframe and written to the mkgpublic s3 bucket as a parquet file.

Crypto

Using the coingecko api, crypto currency statistical data was pulled and stored in a pandas dataframe.

After storing the data in the pandas df, the data was written to the MongoDB database used for tweets.

Data is continously ingested through this process until enough statistical data about various crypto currencies was stored.

Finally the crypto currency statistical data is pulled from the MongoDB database, stored in a pandas dataframe and written to the mkgpublic s3 bucket as a CSV. *** Note *** I stored the data as a CSV because two sets of data formats were requested. I originally choose to store the crypto stats data as a json file, but even when partitioning the file into several JSON files, the files were too big for airflow to handle. Thus, I went with the csv format.

Crypto Stats and Tweets ELT

Now we get into the udacity capstone data ingestion and processing part of this project.

Ultimately, I choose to follow a similar process to what is in the mkg_airflow repository where I am using airflow to run a sequence of tasks.

Main Scripts

  • dags/tweets_and_crypto_etl.py
  • plugins/helpers/sql_queries.py
  • plugins/operators/stage_redshift.py
  • plugins/operators/load_dimension.py
  • plugins/operators/load_fact.py
  • plugins/helpers/analysis.py
  • plugins/operators/data_quality.py

Data Model

Udacity Capstone Project Data Model
  1. Data is loaded into the staging tables cg_coin_list_stg, snscrape_tweets_stg, and cg_hourly_stg on a Redshift Cluster from the S3 bucket
  2. Date information is loaded into Date Dim
  3. Data is loaded into the cg_coin_list table from cg_coin_list_stg
  4. Data is loaded into coin_stats_hist using a join between date_dim, cg_hourly_stg, and cg_coin_list using date_keys and coin names as parameters to get foreign key allocation
  5. Data is loaded into snscrape_tweets_hist using a join between date_dim, snscrape_tweets_stg and cg_coin_list using date_keys and coin names as parameters to get foreign key allocation

Ultimately, this data model was chosen as the end state will be combining crypto price action with tweet sentiment to determine how the market reacts to price action. So, we need a relationship between the crypto and tweets datasets in order to one day achieve this future state result.

Steps

Airflow Udacity Capstone Dag
  1. Create Redshift Cluster
  2. Create Crypto, Tweets, and Dim Schemas
  3. Create Crypto/Tweets staging and Dim Tables
  4. Staging
  5. Stage Coingecko Token List Mapping Table
  6. Stage Coingecko hourly crypto currency statistical table
  7. Stage snscrape tweets crypto twitter table
  8. Load Dimensions
  9. Load Coingecko Token List Mapping Table
  10. Load Date Dim with date information from Coingecko hourly crypto currency statistical staging table
  11. Load Date Dim with date information from Stage snscrape tweets crypto twitter staging table
  12. Create Fact Tables
  13. Load Fact Tables
  14. Load crypto currency statistics history table
  15. Load snscrape tweets history table
  16. Run Data Quality Checks
  17. Select Statements that make sure data is actually present
  18. Build an Aggregate table with min statistic and max statistic values per month from the coin_stats_hist table
  19. Store resulting dim, fact and aggregate tables in S3
  20. Delete Redshift Cluster

Future Work and Final Thoughts

Some questions for future work:

  • What if the data was increased by 100x.
    • I would use a spark emr cluster to process the data as that would speed up both the data ingestion and the processing parts of the project.
    • This is likely going to happen in my future steps for this project, so ultimately this will be added in future versions.
  • What if the pipelines would be run on a daily basis by 7 am every day.
    • I need a way to get the first part of this process easier. The issue is sometimes either the coingecko or the snscrape tweets api breaks. Thus, if this pipeline would need to be run every day at 7am I would need to fix the initial data ingestion into my S3 bucket, as in, making the process more automated.
    • Nonetheless, if we are just referring to the S3-->Redshift-->S3 part of the process, then I would set airflow to run the current elt process daily as the initial api --> MongoDB --> S3 part of the process would be taken care of.
    • I would also need to add in an extra step so that the pipeline combines the data that is previously stored in the S3 bucket with the new data added.
  • What if the database needed to be accessed by 100+ people.
    • If the database needs to be accessed by 100+ people than I would need to either:
      • constantly run a redshift cluster with the tables stored in said cluster (this requires additional IAM configuration and security protocols)
      • store the results in MongoDB so everyone can just pull from that database using pandas (requires adding everyones IP to the MongoDB Network)
      • have users simply pull from the mkgpublic S3 Bucket (just need the S3 URI) and using a platform like Databricks for users to run analysis

Future Work

Ultimately, I want to use these datasets as the backend to a dashboard hosted on a website.

I want to incoporate reddit data as well into the mix. Afterwards, I want to run sentiment analysis on both the tweets and reddit thread datasets to determine the current crypto market sentiment.

Work will be done over the next few months on the above tasks.

Owner
Matthew Greene
Backend Engineer
Matthew Greene
A simple key-based text encryption process that encrypts a string based in a list of characteres pairs.

Simple Cipher Encrypter About | New Features | Exemple | How To Use | License ℹ️ About A simple key-based text encryption process that encrypts a stri

Guilherme Farrel 1 Oct 21, 2021
Simple bitcoin ticker for the Pimorono Inky pHAT Red.

bitcoin-ticker Simple bitcoin ticker for the Pimorono Inky pHAT Red. Equipment Raspberry Pi Zero W v1.1 or Pi 2 model b v1.1 Pimorono Inky pHAT Red (S

2 Mar 15, 2022
BlockVis - Create beautiful visualizations of Bitcoin Blockheaders

BlockVis Create beautiful visualizations of Bitcoin Blockheaders How to run To r

Egge 2 Jan 05, 2022
Using with Jupyter making live crypto currency action

Make-Live-Crypto-Currency-With-Python Using with Jupyter making live crypto currency action 1.Note: 💣 You must Create a Binance account and also clic

Mahmut Can Gönül 5 Dec 13, 2021
GreenDoge is a modern community-centric green cryptocurrency based on a proof-of-space-and-time consensus algorithm.

GreenDoge Blockchain Download GreenDoge blockchain GreenDoge is a modern community-centric green cryptocurrency based on a proof-of-space-and-time con

40 Sep 11, 2022
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡

⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡

11.2k Jan 09, 2023
Learn Blockchains by Building One, A simple Blockchain in Python using Flask as a micro web framework.

Blockchain ✨ Learn Blockchains by Building One Yourself Installation Make sure Python 3.6+ is installed. Install Flask Web Framework. Clone this repos

Vaibhaw 46 Jan 05, 2023
Bitcoin Clipper malware made in Python.

a BTC Clipper or a "Bitcoin Clipper" is a type of malware designed to target cryptocurrency transactions.

Nightfall 96 Dec 30, 2022
Hyval will store your information encrypted and decrypt it when needed

Hyval will store your information encrypted and decrypt it when needed

soroush safari 3 Oct 31, 2021
A bot for FaucetCrypto a cryptocurrency faucet. The bot can currently claim PTC ads, main reward and all the shortlinks except exe.io and fc.lc.

A bot for the high paying popular cryptocurrency faucet Faucet Crypto. The bot is built using Python and Selenium, currently it is under active develo

Sourav R S 81 Dec 19, 2022
Vaulty - Encrypt/Decrypt with ChaCha20-Poly1305

Vaulty Encrypt/Decrypt with ChaCha20-Poly1305 Vaulty is an extremely lightweight encryption/decryption tool which uses ChaCha20-Poly1305 to provide 25

Chris Mason 1 Jul 04, 2022
Maximal extractable value inspector for Ethereum, to illuminate the dark forest 🌲 💡

mev-inspect-py Maximal extractable value inspector for Ethereum, to illuminate the dark forest 🌲 💡 Given a block, mev-inspect finds: miner payments

Flashbots 563 Dec 29, 2022
Encrypt your code without a worry. Stark utilizes the base64, hashlib and Crypto lib to encrypt your code which cannot be decrypted with any online tools.

Stark Encrypt your code without a worry. Stark utilizes the base64, hashlib and Crypto lib to encrypt your code which cannot be decrypted with any onl

cliphd 3 Sep 10, 2021
Python program that handles the creation, encryption and storage of log/journal files. Kinda works like a diary of sorts.

LucaSoft J.O.U.R.N.A.L The J.O.U.R.N.A.L (Just anOther User Redaction & Navigation Assistant by Lucaspec72) is a Python program that handles the creat

Lucaspec72 8 Oct 27, 2021
Tron Wallet (TRX) Crack Finder With Python Just 64 Line

TRXGEN Tron Wallet Finder and Crack With Python Tron Wallet (TRX) Crack Finder With Python Just 64 Line My tools [pycharm + anaconda3 + python3.8 + vi

MMDRZA 6 Dec 18, 2022
Active github repos of all cryptocurrencies

This repo is to maintain the list of active repositories for all cryptocurrencies that https://codemask.org uses. The active list will be automaticall

CodeMask 5 May 20, 2022
Simple encryption-at-rest with key rotation support for Python.

keyring Simple encryption-at-rest with key rotation support for Python. N.B.: keyring is not for encrypting passwords--for that, you should use someth

Dann Luciano 1 Dec 23, 2021
Challenge2022 - A backend of a Chia project donation platform

Overview This is a backend of a Chia project donation platform. People can publi

Kronus91 2 Feb 04, 2022
A simple web application with tools of cryptography, made with Flask and Cryptography.

Crypto Tools A web application made with Flask that allows the use of some cryptography tools like message digest, RSA key pair generation and a decip

Felipe Valentin 0 Jan 20, 2022
Discord webhooks for alerting crypto currency price changes & historical data.

Crypto-Discord Discord Webhooks for alerting crypto currency price changes & historical data. Create virtual environment and install requirements. $ s

Филип Арсовски 1 Sep 02, 2022