Table recognition inside douments using neural networks

Overview

TableTrainNet

A simple project for training and testing table recognition in documents.

This project was developed to make a neural network which recognizes tables inside documents. I needed an "intelligent" ocr for work, which could automatically recognize tables to treat them separately.

General overview

The project uses the pre-trained neural network offered by Tensorflow. In addition, a config file was used, according to the choosen pre-trained model, to train with object detections tensorflow API

The datasets was taken from:

Required libraries

Before we go on make sure you have everything installed to be able to use the project:

  • Python 3
  • Tensorflow (tested on r1.8)
  • Its object-detection API (remember to install COCO API. If you are on Windows see at the bottom of the readme)
  • Pillow
  • opencv-python
  • pandas
  • pyprind (useful for process bars)

Project pipeline

The project is made up of different parts that acts together as a pipeline.

Take confidence with costants

I have prepared two "costants" files: dataset_costants.py and inference_constants.py. The first contains all those costants that are useful to use to create dataset, the second to make inference with the frozen graph. If you just want to run the project you should modify only those two files.

Transform the images from RGB to single-channel 8-bit grayscale jpeg images

Since colors are not useful for table detection, we can convert all the images in .jpeg 8-bit single channel images. This) transformation is still under testing. Use python dataset/img_to_jpeg.py after setting dataset_costants.py:

  • DPI_EXTRACTION: output quality of the images;
  • PATH_TO_IMAGES: path/to/datase/images;
  • IMAGES_EXTENSION: extension of the extracted images. The only one tested is .jpeg.

Prepare the dataset for Tensorflow

The dataset was take from ICDAR 2017 POD Competition . It comes with a xml notation file with formulas, images and tables per image. Tensorflow instead can build its own TFRecord from csv informations, so we need to convert the xml files into a csv one. Use python dataset/generate_database_csv.py to do this conversion after setting dataset_costants.py:

  • TRAIN_CSV_NAME: name for .csv train output file;
  • TEST_CSV_NAME: name for .csv test output file;
  • TRAIN_CSV_TO_PATH: folder path for TRAIN_CSV_NAME;
  • TEST_CSV_TO_PATH: folder path for TEST_CSV_NAME;
  • ANNOTATIONS_EXTENSION: extension of annotations. In our case is .xml;
  • TRAINING_PERCENTAGE: percentage of images for training
  • TEST_PERCENTAGE: percentage of images for testing
  • TABLE_DICT: dictionary for data labels. For this project there is no reason to change it;
  • MIN_WIDTH_BOX, MIN_HEIGHT_BOX: minimum dimension to consider a box valid; Some networks don't digest well little boxes, so I put this check.

Generate TF records file

csv files and images are ready: now we need to create our TF record file to feed Tensorflow. Use python generate_tf_records.py to create the train and test.record files that we will need later. No need to configure dataset_costants.py

Train the network

Inside trained_models there are some folders. In each one there are two files, a .config and a .txt one. The first contains a tensorflow configuration, that has to be personalized:

  • fine_tune_checkpoint: path to the frozen graph from pre-trained tensorflow models networks;
  • tf_record_input_reader: path to the train.record and test.record file we created before;
  • label_map_path: path to the labels of your dataset.

The latter contains the command to launch from tensorflow/models/research/object-detection and follows this pattern:

python model_main.py \
--pipeline_config_path=path/to/your_config_file.config \
--model_dir=here/we/save/our/model" \ 
--num_train_steps=num_of_iterations \
--alsologtostderr

Other options are inside tensorflow/models/research/object-detection/model_main.py

Prepare frozen graph

When the net has finished the training, you can export a frozen graph to make inference. Tensorflow offers the utility: from tensorflow/models/research/object-detection run:

python export_inference_graph.py \ 
--input_type=image_tensor \
--pipeline_config_path=path/to/automatically/created/pipeline.config \ 
--trained_checkpoint_prefix=path/to/last/model.ckpt-xxx \
--output_directory=path/to/output/dir

Test your graph!

Now that you have your graph you can try it out: Run inference_with_net.py and set inference_costants.py:

  • PATHS_TO_TEST_IMAGE: path list to all the test images;
  • BMP_IMAGE_TEST_TO_PATH: path to which save test output files;
  • PATHS_TO_LABELS: path to .pbtxt label file;
  • MAX_NUM_BOXES: max number of boxes to be considered;
  • MIN_SCORE: minimum score of boxes to be considered;

Then it will be generated a result image for every combination of:

  • PATHS_TO_CKPTS: list path to all frozen graph you want to test;

In addition it will print a "merged" version of the boxes, in which all the best vertically overlapping boxes are merged together to gain accuracy. TEST_SCORES is a list of numbers that tells the program which scores must be merged together.

The procedure is better described in inference_with_net.py.

For every execution a .log file will be produced.

Common issues while installing Tensorflow models

TypeError: can't pickle dict_values objects

This comment will probably solve your problem.

Windows build and python3 support for COCO API dataset

This clone will provide a working source for COCO API in Windows and Python3

Owner
Giovanni Cavallin
Giovanni Cavallin
Responsive Doc. scanner using U^2-Net, Textcleaner and Tesseract

Responsive Doc. scanner using U^2-Net, Textcleaner and Tesseract Toolset U^2-Net is used for background removal Textcleaner is used for image cleaning

3 Jul 13, 2022
かの有名なあの東方二次創作ソング、「bad apple!」のMVをPythonでやってみたって話

bad apple!! 内容 このプログラムは、bad apple!(feat. nomico)のPVをPythonを用いて再現しよう!という内容です。 実はYoutube並びにGithub上に似たようなプログラムがあったしなんならそっちの方が結構良かったりするんですが、一応公開しますw 使い方 こ

赤紫 8 Jan 05, 2023
An interactive interface for using OpenCV's GrabCut algorithm for image segmentation.

Interactive GrabCut An interactive interface for using OpenCV's GrabCut algorithm for image segmentation. Setup Install dependencies: pip install nump

Jason Y. Zhang 16 Oct 10, 2022
Text modding tools for FF7R (Final Fantasy VII Remake)

FF7R_text_mod_tools Subtitle modding tools for FF7R (Final Fantasy VII Remake) There are 3 tools I made. make_dualsub_mod.exe: Merges (or swaps) subti

10 Dec 19, 2022
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
Scene text recognition

AttentionOCR for Arbitrary-Shaped Scene Text Recognition Introduction This is the ranked No.1 tensorflow based scene text spotting algorithm on ICDAR2

777 Jan 09, 2023
Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Abdulazeez Jimoh 1 Jan 01, 2022
Driver Drowsiness Detection with OpenCV & Dlib

In this project, we have built a driver drowsiness detection system that will detect if the eyes of the driver are close for too long and infer if the driver is sleepy or inactive.

Mansi Mishra 4 Oct 26, 2022
Links to awesome OCR projects

Awesome OCR This list contains links to great software tools and libraries and literature related to Optical Character Recognition (OCR). Contribution

Konstantin Baierer 2.2k Jan 02, 2023
Handwriting Recognition System based on a deep Convolutional Recurrent Neural Network architecture

Handwriting Recognition System This repository is the Tensorflow implementation of the Handwriting Recognition System described in Handwriting Recogni

Edgard Chammas 346 Jan 07, 2023
Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz.

opencv_yuz_bulma Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz. Bilgisarın kendi kamerasını kullanmak için;

Ahmet Haydar Ornek 6 Apr 16, 2022
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
list all open dataset about ocr.

ocr-open-dataset list all open dataset about ocr. printed dataset year Born-Digital Images (Web and Email) 2011-2015 COCO-Text 2017 Text Extraction fr

hongbomin 95 Nov 24, 2022
The official code for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates".

SpeechDrivesTemplates The official repo for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates". [arxiv

Qian Shenhan 53 Dec 23, 2022
Table recognition inside douments using neural networks

TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco

Giovanni Cavallin 93 Jul 24, 2022
Hand gesture detection project with aweome UI implementation.

an awesome hand gesture detection project for you to be creative! Imagination is the limit to do with this project.

AR Ashraf 39 Sep 26, 2022
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
Handwritten Character Recognition using CNN

Handwritten Character Recognition using CNN Problem Definition The main objective of this project is to solve the problem of handwritten character rec

Mohit Kaushik 4 Mar 02, 2022
A python programusing Tkinter graphics library to randomize questions and answers contained in text files

RaffleOfQuestions Um programa simples em python, utilizando a biblioteca gráfica Tkinter para randomizar perguntas e respostas contidas em arquivos de

Gabriel Ferreira Rodrigues 1 Dec 16, 2021