HINet: Half Instance Normalization Network for Image Restoration

Related tags

Deep LearningHINet
Overview

PWC PWC PWC PWC PWC PWC PWC

HINet: Half Instance Normalization Network for Image Restoration

Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen

Paper: https://arxiv.org/abs/2105.06086

In this paper, we explore the role of Instance Normalization in low-level vision tasks. Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to boost the performance of image restoration networks. Based on HIN Block, we design a simple and powerful multi-stage network named HINet, which consists of two subnetworks. With the help of HIN Block, HINet surpasses the state-of-the-art (SOTA) on various image restoration tasks. For image denoising, we exceed it 0.11dB and 0.28 dB in PSNR on SIDD dataset, with only 7.5% and 30% of its multiplier-accumulator operations (MACs), 6.8 times and 2.9 times speedup respectively. For image deblurring, we get comparable performance with 22.5% of its MACs and 3.3 times speedup on REDS and GoPro datasets. For image deraining, we exceed it by 0.3 dB in PSNR on the average result of multiple datasets with 1.4 times speedup. With HINet, we won 1st place on the NTIRE 2021 Image Deblurring Challenge - Track2. JPEG Artifacts, with a PSNR of 29.70.

Network Architecture

arch

Installation

This implementation based on BasicSR which is a open source toolbox for image/video restoration tasks.

python 3.6.9
pytorch 1.5.1
cuda 10.1
git clone https://github.com/megvii-model/HINet
cd HINet
pip install -r requirements.txt
python setup.py develop --no_cuda_ext

Image Restoration Tasks


Image denoise, deblur, derain.

Image Denoise - SIDD dataset (Coming soon)
Image Deblur - GoPro dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/GoPro

    • download the train set in ./datasets/GoPro/train and test set in ./datasets/GoPro/test (refer to MPRNet)

    • it should be like:

      ./datasets/
      ./datasets/GoPro/
      ./datasets/GoPro/train/
      ./datasets/GoPro/train/input/
      ./datasets/GoPro/train/target/
      ./datasets/GoPro/test/
      ./datasets/GoPro/test/input/
      ./datasets/GoPro/test/target/
    • python scripts/data_preparation/gopro.py

      • crop the train image pairs to 512x512 patches.
  • eval

    • download pretrained model to ./experiments/pretrained_models/HINet-GoPro.pth
    • python basicsr/test.py -opt options/test/REDS/HINet-GoPro.yml
  • train

    • python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/GoPro/HINet.yml --launcher pytorch
Image Deblur - REDS dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/REDS

    • download the train / val set from train_blur, train_sharp, val_blur, val_sharp to ./datasets/REDS/ and unzip them.

    • it should be like

      ./datasets/
      ./datasets/REDS/
      ./datasets/REDS/val/
      ./datasets/REDS/val/val_blur_jpeg/
      ./datasets/REDS/val/val_sharp/
      ./datasets/REDS/train/
      ./datasets/REDS/train/train_blur_jpeg/
      ./datasets/REDS/train/train_sharp/
      
    • python scripts/data_preparation/reds.py

      • flatten the folders and extract 300 validation images.
  • eval

    • download pretrained model to ./experiments/pretrained_models/HINet-REDS.pth
    • python basicsr/test.py -opt options/test/REDS/HINet-REDS.yml
  • train

    • python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/REDS/HINet.yml --launcher pytorch
Image Derain - Rain13k dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/Rain13k

    • download the train set and test set (refer to MPRNet)

    • it should be like

      ./datasets/
      ./datasets/Rain13k/
      ./datasets/Rain13k/train/
      ./datasets/Rain13k/train/input/
      ./datasets/Rain13k/train/target/
      ./datasets/Rain13k/test/
      ./datasets/Rain13k/test/Test100/
      ./datasets/Rain13k/test/Rain100H/
      ./datasets/Rain13k/test/Rain100L/
      ./datasets/Rain13k/test/Test2800/
      ./datasets/Rain13k/test/Test1200/
      
  • eval

    • download pretrained model to ./experiments/pretrained_models/HINet-Rain13k.pth

    • For Test100:

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Test100.yml
    • For Rain100H

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Rain100H.yml
    • For Rain100L

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Rain100L.yml
    • For Test2800

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Test2800.yml
    • For Test1200

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Test1200.yml
  • train

    • python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train_rain.py -opt options/train/Rain13k/HINet.yml --launcher pytorch

Results


Some of the following results are higher than the original paper as we optimized some hyper-parameters.

NTIRE2021 Deblur Track2 ResultSIDD ResultGoPro Result
REDDS ResultRain13k Result

Citations

If HINet helps your research or work, please consider citing HINet.

@inproceedings{chen2021hinet,
  title={HINet: Half Instance Normalization Network for Image Restoration},
  author={Liangyu Chen and Xin Lu and Jie Zhang and Xiaojie Chu and Chengpeng Chen},
  booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year={2021}
}

Contact

If you have any questions, please contact [email protected] or [email protected] .

Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022