Meta Representation Transformation for Low-resource Cross-lingual Learning

Related tags

Deep LearningMetaXL
Overview

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning

This repo hosts the code for MetaXL, published at NAACL 2021.

[MetaXL: Meta Representation Transformation for Low- resource Cross-lingual Learning] (https://arxiv.org/pdf/2104.07908.pdf)

Mengzhou Xia, Guoqing Zheng, Subhabrata Mukherjee, Milad Shokouhi, Graham Neubig, Ahmed Hassan Awadallah

NAACL 2021

MetaXL is a meta-learning framework that learns a main model and a relatively small structure, called representation transformation network (RTN) through a bi-level optimization procedure with the goal to transform representations from auxiliary languages such that it benefits the target task the most.

Data

Please download [WikiAnn] (https://github.com/afshinrahimi/mmner), [MARC] (https://registry.opendata.aws/amazon-reviews-ml/), [SentiPers] (https://github.com/phosseini/sentipers) and [Sentiraama] (https://ltrc.iiit.ac.in/showfile.php?filename=downloads/sentiraama/) on its corresponding. Please refer to data/data_index.txt for data splits.

Scripts

The following script shows how to run metaxl on the named entity recognition task on Quechua.

python3 mtrain.py \
      --data_dir data_dir \
      --bert_model xlm-roberta-base \
      --tgt_lang qa \
      --task_name panx \
      --train_max_seq_length 200 \
      --max_seq_length 512 \
      --epochs 20 \
      --batch_size 10 \
      --method metaxl \
      --output_dir output_dir \
      --warmup_proportion 0.1 \
      --main_lr 3e-05 \
      --meta_lr 1e-06 \
      --train_size 1000\
      --target_train_size 100 \
      --source_languages en \
      --source_language_strategy specified \
      --layers 12 \
      --struct perceptron \
      --tied  \
      --transfer_component_add_weights \
      --tokenizer_dir None \
      --bert_model_type ori \
      --bottle_size 192 \
      --portion 2 \
      --data_seed 42  \
      --seed 11 \
      --do_train  \
      --do_eval 

The following script shows how to run metaxl on the sentiment analysis task on fa.

python3 mtrain.py  \
		--data_dir data_dir \
		--task_name sent \
		--bert_model xlm-roberta-base \
		--tgt_lang fa \
		--train_max_seq_length 256 \
		--max_seq_length 256 \
		--epochs 20 \
		--batch_size 10 \
		--method metaxl \
		--output_dir ${output_dir} \
		--warmup_proportion 0.1 \
		--main_lr 3e-05 \
		--meta_lr 1e-6 \
		--train_size 1000 \
		--target_train_size 100 \
		--source_language_strategy specified  \
		--source_languages en \
		--layers 12 \
		--struct perceptron \
		--tied  \
		--transfer_component_add_weights \
		--tokenizer_dir None  \
		--bert_model_type ori  \
		--bottle_size 192  \
		--portion 2 	\
		--data_seed 42 \
		--seed 11  \
		--do_train  \
		--do_eval

Citation

If you find MetaXL useful, please cite the following paper

@inproceedings{xia2021metaxl,
  title={MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning},
  author={Mengzhou, Xia and Zheng, Guoqing and Mukherjee, Subhabrata and Shokouhi, Milad and Newbig, Graham and Awadallah, Ahmed Hassan},
  journal={NAACL},
  year={2021},
}

This repository is released under MIT License. (See LICENSE)

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023