Unofficial Pytorch Implementation of WaveGrad2

Overview

WaveGrad 2 — Unofficial PyTorch Implementation

WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
Unofficial PyTorch+Lightning Implementation of Chen et al.(JHU, Google Brain), WaveGrad2.
Audio Samples: https://mindslab-ai.github.io/wavegrad2/

TODO

  • More training for WaveGrad-Base setup
  • Checkpoint release
  • WaveGrad-Large Decoder
  • Inference by reduced sampling steps

Requirements

Datasets

The supported datasets are

  • LJSpeech: a single-speaker English dataset consists of 13100 short audio clips of a female speaker reading passages from 7 non-fiction books, approximately 24 hours in total.
  • AISHELL-3: a Mandarin TTS dataset with 218 male and female speakers, roughly 85 hours in total.
  • etc.

We take LJSpeech as an example hereafter.

Preprocessing

  • Adjust preprocess.yaml, especially path section.
path:
  corpus_path: '/DATA1/LJSpeech-1.1' # LJSpeech corpus path
  lexicon_path: 'lexicon/librispeech-lexicon.txt'
  raw_path: './raw_data/LJSpeech'
  preprocessed_path: './preprocessed_data/LJSpeech'
  • run prepare_align.py for some preparations.
python prepare_align.py -c preprocess.yaml
  • Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences. Alignments for the LJSpeech and AISHELL-3 datasets are provided here. You have to unzip the files in preprocessed_data/LJSpeech/TextGrid/.

  • After that, run preprocess.py.

python preprocess.py -c preprocess.yaml
  • Alternately, you can align the corpus by yourself.
  • Download the official MFA package and run it to align the corpus.
./montreal-forced-aligner/bin/mfa_align raw_data/LJSpeech/ lexicon/librispeech-lexicon.txt english preprocessed_data/LJSpeech

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LJSpeech/ lexicon/librispeech-lexicon.txt preprocessed_data/LJSpeech
  • And then run preprocess.py.
python preprocess.py -c preprocess.yaml

Training

  • Adjust hparameter.yaml, especially train section.
train:
  batch_size: 12 # Dependent on GPU memory size
  adam:
    lr: 3e-4
    weight_decay: 1e-6
  decay:
    rate: 0.05
    start: 25000
    end: 100000
  num_workers: 16 # Dependent on CPU cores
  gpus: 2 # number of GPUs
  loss_rate:
    dur: 1.0
  • If you want to train with other dataset, adjust data section in hparameter.yaml
data:
  lang: 'eng'
  text_cleaners: ['english_cleaners'] # korean_cleaners, english_cleaners, chinese_cleaners
  speakers: ['LJSpeech']
  train_dir: 'preprocessed_data/LJSpeech'
  train_meta: 'train.txt'  # relative path of metadata file from train_dir
  val_dir: 'preprocessed_data/LJSpeech'
  val_meta: 'val.txt'  # relative path of metadata file from val_dir'
  lexicon_path: 'lexicon/librispeech-lexicon.txt'
  • run trainer.py
python trainer.py
  • If you want to resume training from checkpoint, check parser.
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--resume_from', type =int,\
	required = False, help = "Resume Checkpoint epoch number")
parser.add_argument('-s', '--restart', action = "store_true",\
	required = False, help = "Significant change occured, use this")
parser.add_argument('-e', '--ema', action = "store_true",
	required = False, help = "Start from ema checkpoint")
args = parser.parse_args()
  • During training, tensorboard logger is logging loss, spectrogram and audio.
tensorboard --logdir=./tensorboard --bind_all

Inference

  • run inference.py
python inference.py -c <checkpoint_path> --text <'text'>

Checkpoint file will be released!

Note

Since this repo is unofficial implementation and WaveGrad2 paper do not provide several details, a slight differences between paper could exist.
We listed modifications or arbitrary setups

  • Normal LSTM without ZoneOut is applied for encoder.
  • g2p_en is applied instead of Google's unknown G2P.
  • Trained with LJSpeech datasdet instead of Google's proprietary dataset.
    • Due to dataset replacement, output audio's sampling rate becomes 22.05kHz instead of 24kHz.
  • MT + SpecAug are not implemented.
  • hyperparameters
    • train.batch_size: 12 for 2 A100 (40GB) GPUs
    • train.adam.lr: 3e-4 and train.adam.weight_decay: 1e-6
    • train.decay learning rate decay is applied during training
    • train.loss_rate: 1 as total_loss = 1 * L1_loss + 1 * duration_loss
    • ddpm.ddpm_noise_schedule: torch.linspace(1e-6, 0.01, hparams.ddpm.max_step)
    • encoder.channel is reduced to 512 from 1024 or 2048
  • Current sample page only contains samples from WaveGrad-Base decoder.
  • TODO things.

Tree

.
├── Dockerfile
├── README.md
├── dataloader.py
├── docs
│   ├── spec.png
│   ├── tb.png
│   └── tblogger.png
├── hparameter.yaml
├── inference.py
├── lexicon
│   ├── librispeech-lexicon.txt
│   └── pinyin-lexicon-r.txt
├── lightning_model.py
├── model
│   ├── base.py
│   ├── downsampling.py
│   ├── encoder.py
│   ├── gaussian_upsampling.py
│   ├── interpolation.py
│   ├── layers.py
│   ├── linear_modulation.py
│   ├── nn.py
│   ├── resampling.py
│   ├── upsampling.py
│   └── window.py
├── prepare_align.py
├── preprocess.py
├── preprocess.yaml
├── preprocessor
│   ├── ljspeech.py
│   └── preprocessor.py
├── text
│   ├── __init__.py
│   ├── cleaners.py
│   ├── cmudict.py
│   ├── numbers.py
│   └── symbols.py
├── trainer.py
├── utils
│   ├── mel.py
│   ├── stft.py
│   ├── tblogger.py
│   └── utils.py
└── wavegrad2_tester.ipynb

Author

This code is implemented by

Special thanks to

References

This implementation uses code from following repositories:

The webpage for the audio samples uses a template from:

The audio samples on our webpage(TBD) are partially derived from:

  • LJSpeech: a single-speaker English dataset consists of 13100 short audio clips of a female speaker reading passages from 7 non-fiction books, approximately 24 hours in total.
  • WaveGrad2 Official Github.io
Owner
MINDs Lab
MINDsLab provides AI platform and various AI engines based on deep machine learning.
MINDs Lab
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023