使用yolov5训练自己数据集(详细过程)并通过flask部署

Overview

使用yolov5训练自己的数据集(详细过程)并通过flask部署

依赖库

  • torch
  • torchvision
  • numpy
  • opencv-python
  • lxml
  • tqdm
  • flask
  • pillow
  • tensorboard
  • matplotlib
  • pycocotools

Windows,请使用 pycocotools-windows 代替 pycocotools

1.准备数据集

这里以PASCAL VOC数据集为例,提取码: 07wp 将获取的数据集放到datasets目录下 数据集结构如下:

---VOC2012
--------Annotations
---------------xml0
---------------xml1
--------JPEGImages
---------------img0
---------------img1
--------pascal_voc_classes.txt

Annotations为所有的xml文件,JPEGImages为所有的图片文件,pascal_voc_classes.txt为类别文件。

获取标签文件

yolo标签文件的格式如下:

102 0.682813 0.415278 0.237500 0.502778
102 0.914844 0.396528 0.168750 0.451389

第一位 label,为图片中物体的类别
后面四位为图片中物体的位置,(xcenter, ycenter, h, w)即目标物体中心位置的相对坐标和相对高宽
上图中存在两个目标

如果你已经拥有如上的label文件,可直接跳到下一步。 没有如上标签文件,可使用 labelimg 提取码 dbi2 打标签。生成xml格式的label文件,再转为yolo格式的label文件。labelimg的使用非常简单,在此不在赘述。

xml格式的label文件转为yolo格式:

python center/xml_yolo.py

pascal_voc_classes.txt,为你的类别对应的json文件。如下为voc数据集类别格式。

["aeroplane","bicycle", "bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train", "tvmonitor"]

运行上面代码后的路径结构

---VOC2012
--------Annotations
--------JPEGImages
--------pascal_voc_classes.json
---yolodata
--------images
--------labels

2.划分训练集和测试集

训练集和测试集的划分很简单,将原始数据打乱,然后按 9 :1划分为训练集和测试集即可。代码如下:

python center/get_train_val.py
运行上面代码会生成如下路径结构
---VOC2012
--------Annotations
--------JPEGImages
--------pascal_voc_classes.json
---yolodata
--------images
--------labels
---traindata
--------images
----------------train
----------------val
--------labels
----------------train
----------------val
traindata就是最后需要的训练文件

3. 训练模型

yolov5的训练很简单,本文已将代码简化,代码结构如下:

dataset             # 数据集
------traindata     # 训练数据集
inference           # 输入输出接口
------inputs        # 输入数据
------outputs       # 输出数据
config              # 配置文件
------score.yaml    # 训练配置文件
------yolov5l.yaml  # 模型配置文件
models              # 模型代码
runs	            # 日志文件
utils               # 代码文件
weights             # 模型保存路径,last.pt,best.pt
train.py            # 训练代码
detect.py           # 测试代码

score.yaml解释如下:

# train and val datasets (image directory)
train: ./datasets/traindata/images/train/
val: ./datasets/traindata/images/val/
# number of classes
nc: 2
# class names
names: ['苹果','香蕉']
  • train: 为图像数据的train,地址
  • val: 为图像数据的val,地址
  • nc: 为类别个数
  • names: 为类别对应的名称
yolov5l.yaml解释如下:
nc: 2 # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 1-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
   [-1, 3, Bottleneck, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 4-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 6-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 6, BottleneckCSP, [1024]],  # 10
  ]
head:
  [[-1, 3, BottleneckCSP, [1024, False]],  # 11
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 12 (P5/32-large)
   [-2, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, Conv, [512, 1, 1]],
   [-1, 3, BottleneckCSP, [512, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 17 (P4/16-medium)
   [-2, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 3, BottleneckCSP, [256, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 22 (P3/8-small)
   [[], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
  • nc:为目标类别个数
  • depth_multiple 和 width_multiple:控制模型深度和宽度。不同的参数对应:s,m,l,x 模型。
  • anchors: 为对输入的目标框通过k-means聚类产生的基础框,通过这个基础框去预测目标的box。
  • yolov5会自动产生anchors,yolov5采用欧氏距离进行k-means聚类,再使用遗传算法做一系列的变异得到最终的anchors。但是本人采用欧氏距离进行k-means聚类得到的效果不如采用 1 - iou进行k-means聚类的效果。如果想要 1 - iou 进行k-means聚类源码请私聊我。但是效果其实相差无几。
  • backbone: 为图像特征提取部分的网络结构。
  • head: 为最后的预测部分的网络结构

#####train.py配置十分简单: 在这里插入图片描述

我们仅需修改如下参数即可

epoch:         控制训练迭代的次数
batch_size     输入迭代的图片数量
cfg:           配置网络模型路径
data:          训练配置文件路径
weights:       载入模型,进行断点继续训练

终端运行(默认yolov5l)

 python train.py

即可开始训练。

训练过程

训练结果

4. 测试模型

需要需改三个参数
source:        需要检测的images/videos路径
out:		保存结果的路径
weights:       训练得到的模型权重文件的路径
你也可以使用在coco数据集上的权重文件进行测试将他们放到weights文件夹下

提取码:hhbb

终端运行

 python detect.py

即可开始检测。

测试结果

5.通过flask部署

flask的部署是非简单。如果有不明白的可以参考我之前的博客。

阿里云ECS部署python,flask项目,简单易懂,无需nginx和uwsgi

基于yolov3-deepsort-flask的目标检测和多目标追踪web平台

终端运行

 python app.py

即可开始跳转到网页,上传图片进行检测。

Owner
HB.com
HB.com
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022