Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Overview

Adversrial Machine Learning Benchmarks

This code belongs to the papers:

For this framework, please cite:

@inproceedings{
lorenz2022is,
title={Is AutoAttack/AutoBench a suitable Benchmark for Adversarial Robustness?},
author={Peter Lorenz and Dominik Strassel and Margret Keuper and Janis Keuper},
booktitle={The AAAI-22 Workshop on Adversarial Machine Learning and Beyond},
year={2022},
url={https://openreview.net/forum?id=aLB3FaqoMBs}
}

This repository is an expansion of https://github.com/paulaharder/SpectralAdversarialDefense, but has some new features:

  • Several runs can be saved for calculating the variance of the results.
  • new attack method: AutoAttack.
  • datasets: imagenet32, imagenet64, imagenet128, imagenet, celebahq32, celebahq64, and celebahq128.
  • new model: besides VGG-16 we trained a model WideResNet28-10, except for imagenet (used the standard pytorch model.)
  • bash scripts: Automatic starts various combination of input parameters
  • automatic .csv creation from all results.

Overview

overview

This image shows the pipeline from training a model, generating adversarial examples to defend them.

  1. Training: Models are trained. Pre-trained models are provided (WideResNet28-10: cif10, cif100, imagenet32, imagenet64, imagenet128, celebaHQ32, celebaHQ64, celebaHQ128; WideResNet51-2: ImageNet; VGG16: cif10 and cif100)
  2. Generate Clean Data: Only correctly classfied samples are stored via torch.save.
  3. Attacks: On this clean data severa atttacks can be executed: FGSM, BIM, AutoAttack (Std), PGD, DF and CW.
  4. Detect Feature: Detectors try to distinguish between attacked and not-attacked images.
  5. Evaluation Detect: Is the management script for handling several runs and extract the results to one .csv file.

Requirements

  • GPUs: A100 (40GB), Titan V (12GB) or GTX 1080 (12GB)
  • CUDA 11.1
  • Python 3.9.5
  • PyTorch 1.9.0
  • cuDNN 8.0.5_0

Clone the repository

$ git clone --recurse-submodules https://github.com/adverML/SpectralDef_Framework
$ cd SpectralDef_Framework

and install the requirements

$ conda create --name cuda--11-1-1--pytorch--1-9-0 -f requirements.yml
$ conda activate cuda--11-1-1--pytorch--1-9-0

There are two possiblities: Either use our data set with existing adversarial examples (not provided yet), in this case follow the instructions under 'Download' or generate the examples by yourself, by going threw 'Data generation'. For both possibilities conclude with 'Build a detector'.

Download

Download the adversarial examples (not provided yet) and their non-adversarial counterparts as well as the trained VGG-16 networks from: https://www.kaggle.com/j53t3r/weights. Extract the folders for the adversarial examples into /data and the models in the main directory. Afterwards continue with 'Build detector'.

Datasets download

These datasets are supported:

Download and copy the weights into data/datasets/. In case of troubles, adapt the paths in conf/global_settings.py.

Model download

To get the weights for all networks for CIFAR-10 and CIFAR-100, ImageNet and CelebaHQ download:

  1. Kaggle Download Weights
  2. Copy the weights into data/weights/.

In case of troubles, adapt the paths in conf/global_settings.py. You are welcome to create an issue on Github.

Data generation

Train the VGG16 on CIFAR-10:

$ python train_cif10.py

or on CIFAR-100

$ python train_cif100.py

The following skript will download the CIFAR-10/100 dataset and extract the CIFAR10/100 (imagenet32, imagenet64, imagenet128, celebAHQ32, ...) images, which are correctly classified by the network by running. Use --net cif10 for CIFAR-10 and --net cif100 for CIFAR-100

$ # python generate_clean_data.py -h  // for help
$ python generate_clean_data.py --net cif10

Then generate the adversarial examples, argument can be fgsm (Fast Gradient Sign Method), bim (Basic Iterative Method), pgd (Projected Gradient Descent), [new] std (AutoAttack Standard), df (Deepfool), cw (Carlini and Wagner), :

$ # python attack.py -h  // for help
$ python attack.py --attack fgsm

Build detector

First extract the necessary characteristics to train a detector, choose a detector out of InputMFS (BlackBox - BB), InputPFS, LayerMFS (WhiteBox - WB), LayerPFS, LID, Mahalanobis adn an attack argument as before:

$ # python extract_characteristics.py -h  // for help
$ python extract_characteristics.py --attack fgsm --detector InputMFS

Then, train a classifier on the characteristics for a specific attack and detector:

$ python detect_adversarials.py --attack fgsm --detector InputMFS

[new] Create csv file

At the end of the file evaluation_detection.py different possibilities are shown:

$ python evaluation_detection.py 

Note that: layers=False for evaluating the detectors after the the right layers are selected.

Other repositories used

You might also like...
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21)
Releases(v1.0.7)
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022