Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Overview

Adversrial Machine Learning Benchmarks

This code belongs to the papers:

For this framework, please cite:

@inproceedings{
lorenz2022is,
title={Is AutoAttack/AutoBench a suitable Benchmark for Adversarial Robustness?},
author={Peter Lorenz and Dominik Strassel and Margret Keuper and Janis Keuper},
booktitle={The AAAI-22 Workshop on Adversarial Machine Learning and Beyond},
year={2022},
url={https://openreview.net/forum?id=aLB3FaqoMBs}
}

This repository is an expansion of https://github.com/paulaharder/SpectralAdversarialDefense, but has some new features:

  • Several runs can be saved for calculating the variance of the results.
  • new attack method: AutoAttack.
  • datasets: imagenet32, imagenet64, imagenet128, imagenet, celebahq32, celebahq64, and celebahq128.
  • new model: besides VGG-16 we trained a model WideResNet28-10, except for imagenet (used the standard pytorch model.)
  • bash scripts: Automatic starts various combination of input parameters
  • automatic .csv creation from all results.

Overview

overview

This image shows the pipeline from training a model, generating adversarial examples to defend them.

  1. Training: Models are trained. Pre-trained models are provided (WideResNet28-10: cif10, cif100, imagenet32, imagenet64, imagenet128, celebaHQ32, celebaHQ64, celebaHQ128; WideResNet51-2: ImageNet; VGG16: cif10 and cif100)
  2. Generate Clean Data: Only correctly classfied samples are stored via torch.save.
  3. Attacks: On this clean data severa atttacks can be executed: FGSM, BIM, AutoAttack (Std), PGD, DF and CW.
  4. Detect Feature: Detectors try to distinguish between attacked and not-attacked images.
  5. Evaluation Detect: Is the management script for handling several runs and extract the results to one .csv file.

Requirements

  • GPUs: A100 (40GB), Titan V (12GB) or GTX 1080 (12GB)
  • CUDA 11.1
  • Python 3.9.5
  • PyTorch 1.9.0
  • cuDNN 8.0.5_0

Clone the repository

$ git clone --recurse-submodules https://github.com/adverML/SpectralDef_Framework
$ cd SpectralDef_Framework

and install the requirements

$ conda create --name cuda--11-1-1--pytorch--1-9-0 -f requirements.yml
$ conda activate cuda--11-1-1--pytorch--1-9-0

There are two possiblities: Either use our data set with existing adversarial examples (not provided yet), in this case follow the instructions under 'Download' or generate the examples by yourself, by going threw 'Data generation'. For both possibilities conclude with 'Build a detector'.

Download

Download the adversarial examples (not provided yet) and their non-adversarial counterparts as well as the trained VGG-16 networks from: https://www.kaggle.com/j53t3r/weights. Extract the folders for the adversarial examples into /data and the models in the main directory. Afterwards continue with 'Build detector'.

Datasets download

These datasets are supported:

Download and copy the weights into data/datasets/. In case of troubles, adapt the paths in conf/global_settings.py.

Model download

To get the weights for all networks for CIFAR-10 and CIFAR-100, ImageNet and CelebaHQ download:

  1. Kaggle Download Weights
  2. Copy the weights into data/weights/.

In case of troubles, adapt the paths in conf/global_settings.py. You are welcome to create an issue on Github.

Data generation

Train the VGG16 on CIFAR-10:

$ python train_cif10.py

or on CIFAR-100

$ python train_cif100.py

The following skript will download the CIFAR-10/100 dataset and extract the CIFAR10/100 (imagenet32, imagenet64, imagenet128, celebAHQ32, ...) images, which are correctly classified by the network by running. Use --net cif10 for CIFAR-10 and --net cif100 for CIFAR-100

$ # python generate_clean_data.py -h  // for help
$ python generate_clean_data.py --net cif10

Then generate the adversarial examples, argument can be fgsm (Fast Gradient Sign Method), bim (Basic Iterative Method), pgd (Projected Gradient Descent), [new] std (AutoAttack Standard), df (Deepfool), cw (Carlini and Wagner), :

$ # python attack.py -h  // for help
$ python attack.py --attack fgsm

Build detector

First extract the necessary characteristics to train a detector, choose a detector out of InputMFS (BlackBox - BB), InputPFS, LayerMFS (WhiteBox - WB), LayerPFS, LID, Mahalanobis adn an attack argument as before:

$ # python extract_characteristics.py -h  // for help
$ python extract_characteristics.py --attack fgsm --detector InputMFS

Then, train a classifier on the characteristics for a specific attack and detector:

$ python detect_adversarials.py --attack fgsm --detector InputMFS

[new] Create csv file

At the end of the file evaluation_detection.py different possibilities are shown:

$ python evaluation_detection.py 

Note that: layers=False for evaluating the detectors after the the right layers are selected.

Other repositories used

You might also like...
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21)
Releases(v1.0.7)
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022