GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

Overview

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model

This repository is the official PyTorch implementation of GraphRNN, a graph generative model using auto-regressive model.

Jiaxuan You*, Rex Ying*, Xiang Ren, William L. Hamilton, Jure Leskovec, GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model (ICML 2018)

Installation

Install PyTorch following the instuctions on the official website. The code has been tested over PyTorch 0.2.0 and 0.4.0 versions.

conda install pytorch torchvision cuda90 -c pytorch

Then install the other dependencies.

pip install -r requirements.txt

Test run

python main.py

Code description

For the GraphRNN model: main.py is the main executable file, and specific arguments are set in args.py. train.py includes training iterations and calls model.py and data.py create_graphs.py is where we prepare target graph datasets.

For baseline models:

  • B-A and E-R models are implemented in baselines/baseline_simple.py.
  • Kronecker graph model is implemented in the SNAP software, which can be found in https://github.com/snap-stanford/snap/tree/master/examples/krongen (for generating Kronecker graphs), and https://github.com/snap-stanford/snap/tree/master/examples/kronfit (for learning parameters for the model).
  • MMSB is implemented using the EDWARD library (http://edwardlib.org/), and is located in baselines.
  • We implemented the DeepGMG model based on the instructions of their paper in main_DeepGMG.py.
  • We implemented the GraphVAE model based on the instructions of their paper in baselines/graphvae.

Parameter setting: To adjust the hyper-parameter and input arguments to the model, modify the fields of args.py accordingly. For example, args.cuda controls which GPU is used to train the model, and args.graph_type specifies which dataset is used to train the generative model. See the documentation in args.py for more detailed descriptions of all fields.

Outputs

There are several different types of outputs, each saved into a different directory under a path prefix. The path prefix is set at args.dir_input. Suppose that this field is set to ./:

  • ./graphs contains the pickle files of training, test and generated graphs. Each contains a list of networkx object.
  • ./eval_results contains the evaluation of MMD scores in txt format.
  • ./model_save stores the model checkpoints
  • ./nll saves the log-likelihood for generated graphs as sequences.
  • ./figures is used to save visualizations (see Visualization of graphs section).

Evaluation

The evaluation is done in evaluate.py, where user can choose which settings to evaluate. To evaluate how close the generated graphs are to the ground truth set, we use MMD (maximum mean discrepancy) to calculate the divergence between two sets of distributions related to the ground truth and generated graphs. Three types of distributions are chosen: degree distribution, clustering coefficient distribution. Both of which are implemented in eval/stats.py, using multiprocessing python module. One can easily extend the evaluation to compute MMD for other distribution of graphs.

We also compute the orbit counts for each graph, represented as a high-dimensional data point. We then compute the MMD between the two sets of sampled points using ORCA (see http://www.biolab.si/supp/orca/orca.html) at eval/orca. One first needs to compile ORCA by

g++ -O2 -std=c++11 -o orca orca.cpp` 

in directory eval/orca. (the binary file already in repo works in Ubuntu).

To evaluate, run

python evaluate.py

Arguments specific to evaluation is specified in class evaluate.Args_evaluate. Note that the field Args_evaluate.dataset_name_all must only contain datasets that are already trained, by setting args.graph_type to each of the datasets and running python main.py.

Visualization of graphs

The training, testing and generated graphs are saved at 'graphs/'. One can visualize the generated graph using the function utils.load_graph_list, which loads the list of graphs from the pickle file, and util.draw_graph_list, which plots the graph using networkx.

Misc

Jesse Bettencourt and Harris Chan have made a great slide introducing GraphRNN in Prof. David Duvenaud’s seminar course Learning Discrete Latent Structure.

Owner
Jiaxuan
Jiaxuan
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022