Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Overview

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Yonghao Xu and Pedram Ghamisi


This research has been conducted at the Institute of Advanced Research in Artificial Intelligence (IARAI).

This is the official PyTorch implementation of the black-box adversarial attack methods for remote sensing data in our paper Universal adversarial examples in remote sensing: Methodology and benchmark.

Table of content

  1. Dataset
  2. Supported methods and models
  3. Preparation
  4. Adversarial attacks on scene classification
  5. Adversarial attacks on semantic segmentation
  6. Performance evaluation on the UAE-RS dataset
  7. Paper
  8. Acknowledgement
  9. License

Dataset

We collect the generated universal adversarial examples in the dataset named UAE-RS, which is the first dataset that provides black-box adversarial samples in the remote sensing field.

πŸ“‘ Download links:  Google Drive        Baidu NetDisk (Code: 8g1r)

To build UAE-RS, we use the Mixcut-Attack method to attack ResNet18 with 1050 test samples from the UCM dataset and 5000 test samples from the AID dataset for scene classification, and use the Mixup-Attack method to attack FCN-8s with 5 test images from the Vaihingen dataset (image IDs: 11, 15, 28, 30, 34) and 5 test images from the Zurich Summer dataset (image IDs: 16, 17, 18, 19, 20) for semantic segmentation.

Example images in the UCM dataset and the corresponding adversarial examples in the UAE-RS dataset.

Example images in the AID dataset and the corresponding adversarial examples in the UAE-RS dataset.

Qualitative results of the black-box adversarial attacks from FCN-8s β†’ SegNet on the Vaihingen dataset.

(a) The original clean test images in the Vaihingen dataset. (b) The corresponding adversarial examples in the UAE-RS dataset. (c) Segmentation results of SegNet on the clean images. (d) Segmentation results of SegNet on the adversarial images. (e) Ground-truth annotations.

Supported methods and models

This repo contains implementations of black-box adversarial attacks for remote sensing data on both scene classification and semantic segmentation tasks.

Preparation

  • Package requirements: The scripts in this repo are tested with torch==1.10 and torchvision==0.11 using two NVIDIA Tesla V100 GPUs.
  • Remote sensing datasets used in this repo:
  • Data folder structure
    • The data folder is structured as follows:
β”œβ”€β”€ <THE-ROOT-PATH-OF-DATA>/
β”‚   β”œβ”€β”€ UCMerced_LandUse/     
|   |   β”œβ”€β”€ Images/
|   |   |   β”œβ”€β”€ agricultural/
|   |   |   β”œβ”€β”€ airplane/
|   |   |   |── ...
β”‚   β”œβ”€β”€ AID/     
|   |   β”œβ”€β”€ Airport/
|   |   β”œβ”€β”€ BareLand/
|   |   |── ...
β”‚   β”œβ”€β”€ Vaihingen/     
|   |   β”œβ”€β”€ img/
|   |   β”œβ”€β”€ gt/
|   |   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ Zurich/    
|   |   β”œβ”€β”€ img/
|   |   β”œβ”€β”€ gt/
|   |   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ UAE-RS/    
|   |   β”œβ”€β”€ UCM/
|   |   β”œβ”€β”€ AID/
|   |   β”œβ”€β”€ Vaihingen/
|   |   β”œβ”€β”€ Zurich/
  • Pretraining the models for scene classification
CUDA_VISIBLE_DEVICES=0,1 python pretrain_cls.py --network 'alexnet' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0,1 python pretrain_cls.py --network 'resnet18' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0,1 python pretrain_cls.py --network 'inception' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
...
  • Pretraining the models for semantic segmentation
cd ./segmentation
CUDA_VISIBLE_DEVICES=0 python pretrain_seg.py --model 'fcn8s' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0 python pretrain_seg.py --model 'deeplabv2' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0 python pretrain_seg.py --model 'segnet' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
...

Please replace <THE-ROOT-PATH-OF-DATA> with the local path where you store the remote sensing datasets.

Adversarial attacks on scene classification

  • Generate adversarial examples:
CUDA_VISIBLE_DEVICES=0 python attack_cls.py --surrogate_model 'resnet18' \
                                            --attack_func 'fgsm' \
                                            --dataID 1 \
                                            --root_dir <THE-ROOT-PATH-OF-DATA>
  • Performance evaluation on the adversarial test set:
CUDA_VISIBLE_DEVICES=0 python test_cls.py --surrogate_model 'resnet18' \
                                          --target_model 'inception' \
                                          --attack_func 'fgsm' \
                                          --dataID 1 \
                                          --root_dir <THE-ROOT-PATH-OF-DATA>

You can change parameters --surrogate_model, --attack_func, and --target_model to evaluate the performance with different attacking scenarios.

Adversarial attacks on semantic segmentation

  • Generate adversarial examples:
cd ./segmentation
CUDA_VISIBLE_DEVICES=0 python attack_seg.py --surrogate_model 'fcn8s' \
                                            --attack_func 'fgsm' \
                                            --dataID 1 \
                                            --root_dir <THE-ROOT-PATH-OF-DATA>
  • Performance evaluation on the adversarial test set:
CUDA_VISIBLE_DEVICES=0 python test_seg.py --surrogate_model 'fcn8s' \
                                          --target_model 'segnet' \
                                          --attack_func 'fgsm' \
                                          --dataID 1 \
                                          --root_dir <THE-ROOT-PATH-OF-DATA>

You can change parameters --surrogate_model, --attack_func, and --target_model to evaluate the performance with different attacking scenarios.

Performance evaluation on the UAE-RS dataset

  • Scene classification:
CUDA_VISIBLE_DEVICES=0 python test_cls_uae_rs.py --target_model 'inception' \
                                                 --dataID 1 \
                                                 --root_dir <THE-ROOT-PATH-OF-DATA>

Scene classification results of different deep neural networks on the clean and UAE-RS test sets:

UCM AID
Model Clean Test Set Adversarial Test Set OA Gap Clean Test Set Adversarial Test Set OA Gap
AlexNet 90.28 30.86 -59.42 89.74 18.26 -71.48
VGG11 94.57 26.57 -68.00 91.22 12.62 -78.60
VGG16 93.04 19.52 -73.52 90.00 13.46 -76.54
VGG19 92.85 29.62 -63.23 88.30 15.44 -72.86
Inception-v3 96.28 24.86 -71.42 92.98 23.48 -69.50
ResNet18 95.90 2.95 -92.95 94.76 0.02 -94.74
ResNet50 96.76 25.52 -71.24 92.68 6.20 -86.48
ResNet101 95.80 28.10 -67.70 92.92 9.74 -83.18
ResNeXt50 97.33 26.76 -70.57 93.50 11.78 -81.72
ResNeXt101 97.33 33.52 -63.81 95.46 12.60 -82.86
DenseNet121 97.04 17.14 -79.90 95.50 10.16 -85.34
DenseNet169 97.42 25.90 -71.52 95.54 9.72 -85.82
DenseNet201 97.33 26.38 -70.95 96.30 9.60 -86.70
RegNetX-400MF 94.57 27.33 -67.24 94.38 19.18 -75.20
RegNetX-8GF 97.14 40.76 -56.38 96.22 19.24 -76.98
RegNetX-16GF 97.90 34.86 -63.04 95.84 13.34 -82.50
  • Semantic segmentation:
cd ./segmentation
CUDA_VISIBLE_DEVICES=0 python test_seg_uae_rs.py --target_model 'segnet' \
                                                 --dataID 1 \
                                                 --root_dir <THE-ROOT-PATH-OF-DATA>

Semantic segmentation results of different deep neural networks on the clean and UAE-RS test sets:

Vaihingen Zurich Summer
Model Clean Test Set Adversarial Test Set mF1 Gap Clean Test Set Adversarial Test Set mF1 Gap
FCN-32s 69.48 35.00 -34.48 66.26 32.31 -33.95
FCN-16s 69.70 27.02 -42.68 66.34 34.80 -31.54
FCN-8s 82.22 22.04 -60.18 79.90 40.52 -39.38
DeepLab-v2 77.04 34.12 -42.92 74.38 45.48 -28.90
DeepLab-v3+ 84.36 14.56 -69.80 82.51 62.55 -19.96
SegNet 78.70 17.84 -60.86 75.59 35.58 -40.01
ICNet 80.89 41.00 -39.89 78.87 59.77 -19.10
ContextNet 81.17 47.80 -33.37 77.89 63.71 -14.18
SQNet 81.85 39.08 -42.77 76.32 55.29 -21.03
PSPNet 83.11 21.43 -61.68 77.55 65.39 -12.16
U-Net 83.61 16.09 -67.52 80.78 56.58 -24.20
LinkNet 82.30 24.36 -57.94 79.98 48.67 -31.31
FRRNetA 84.17 16.75 -67.42 80.50 58.20 -22.30
FRRNetB 84.27 28.03 -56.24 79.27 67.31 -11.96

Paper

Universal adversarial examples in remote sensing: Methodology and benchmark

Please cite the following paper if you use the data or the code:

@article{uaers,
  title={Universal adversarial examples in remote sensing: Methodology and benchmark}, 
  author={Xu, Yonghao and Ghamisi, Pedram},
  journal={arXiv preprint arXiv:2202.07054},
  year={2022},
}

Acknowledgement

The authors would like to thank Prof. Shawn Newsam for making the UCM dataset public available, Prof. Gui-Song Xia for providing the AID dataset, the International Society for Photogrammetry and Remote Sensing (ISPRS), and the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) for providing the Vaihingen dataset, and Dr. Michele Volpi for providing the Zurich Summer dataset.

Efficient-Segmentation-Networks

segmentation_models.pytorch

Adversarial-Attacks-PyTorch

License

This repo is distributed under MIT License. The UAE-RS dataset can be used for academic purposes only.

Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data πŸ’¨ Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos CarreΓ±o 108 Dec 27, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022