Self-training for Few-shot Transfer Across Extreme Task Differences

Related tags

Deep LearningSTARTUP
Overview

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP)

Introduction

This repo contains the official implementation of the following ICLR2021 paper:

Title: Self-training for Few-shot Transfer Across Extreme Task Differences
Authors: Cheng Perng Phoo, Bharath Hariharan
Institution: Cornell University
Arxiv: https://arxiv.org/abs/2010.07734
Abstract:
Most few-shot learning techniques are pre-trained on a large, labeled "base dataset". In problem domains where such large labeled datasets are not available for pre-training (e.g., X-ray, satellite images), one must resort to pre-training in a different "source" problem domain (e.g., ImageNet), which can be very different from the desired target task. Traditional few-shot and transfer learning techniques fail in the presence of such extreme differences between the source and target tasks. In this paper, we present a simple and effective solution to tackle this extreme domain gap: self-training a source domain representation on unlabeled data from the target domain. We show that this improves one-shot performance on the target domain by 2.9 points on average on the challenging BSCD-FSL benchmark consisting of datasets from multiple domains.

Requirements

This codebase is tested with:

  1. PyTorch 1.7.1
  2. Torchvision 0.8.2
  3. NumPy
  4. Pandas
  5. wandb (used for logging. More here: https://wandb.ai/)

Running Experiments

Step 0: Dataset Preparation

MiniImageNet and CD-FSL: Download the datasets for CD-FSL benchmark following step 1 and step 2 here: https://github.com/IBM/cdfsl-benchmark
tieredImageNet: Prepare the tieredImageNet dataset following https://github.com/mileyan/simple_shot. Note after running the preparation script, you will need to split the saved images into 3 different folders: train, val, test.

Step 1: Teacher Training on the Base Dataset

We provide scripts to produce teachers for different base datasets. Regardless of the base datasets, please follow the following steps to produce the teachers:

  1. Go into the directory teacher_miniImageNet/ (teacher_ImageNet/ for ImageNet)
  2. Take care of the TODO: in run.sh and configs.py (if applicable).
  3. Run bash run.sh to produce the teachers.

Note that for miniImageNet and tieredImageNet, the training script is adapted based on the official script provided by the CD-FSL benchmark. For ImageNet, we simply download the pre-trained models from PyTorch and convert them to relevant format.

Step 2: Student Training

To train the STARTUP's representation, please follow the following steps:

  1. Go into the directory student_STARTUP/ (student_STARTUP_no_self_supervision/ for the version without SimCLR)
  2. Take care of the TODO: in run.sh and configs.py
  3. Run bash run.sh to produce the student/STARTUP representation.

Step 3: Evaluation

To evaluate different representations, go into evaluation/, modify the TODO: in run.sh and configs.py and run bash run.sh.

Notes

  1. When producing the results for the submitted paper, we did not set torch.backends.cudnn.deterministic and torch.backends.cudnn.benchmark properly, thus causing non-deterministic behaviors. We have rerun our experiments and the updated numbers can be found here: https://docs.google.com/spreadsheets/d/1O1e9xdI1SxVvRWK9VVxcO8yefZhePAHGikypWfhRv8c/edit?usp=sharing. Although some of the numbers has changed, the conclusion in the paper remains unchanged. STARTUP is able to outperform all the baselines, bringing forth tremendous improvements to cross-domain few-shot learning.
  2. All the trainings are done on Nvidia Titan RTX GPU. Evaluation of different representations are performed using Nvidia RTX 2080Ti. Regardless of the GPU models, CUDA11 is used.
  3. This repo is built upon the official CD-FSL benchmark repo: https://github.com/IBM/cdfsl-benchmark/tree/9c6a42f4bb3d2638bb85d3e9df3d46e78107bc53. We thank the creators of the CD-FSL benchmark for releasing code to the public.
  4. If you find this codebase or STARTUP useful, please consider citing our paper:
@inproceeding{phoo2021STARTUP,
    title={Self-training for Few-shot Transfer Across Extreme Task Differences},
    author={Phoo, Cheng Perng and Hariharan, Bharath},
    booktitle={Proceedings of the International Conference on Learning Representations},
    year={2021}
}
Owner
Cheng Perng Phoo
PhD Student at Cornell
Cheng Perng Phoo
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Gesture recognition on Event Data

Event based Gesture Recognition Gesture recognition on Event Data usually involv

2 Feb 14, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022