LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Overview

Query Selector

Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sparse attention Transformer algorithm that is especially suitable for long term time series forecasting

Depencency

Python            3.7.9
deepspeed         0.4.0
numpy             1.20.3
pandas            1.2.4
scipy             1.6.3
tensorboardX      1.8
torch             1.7.1
torchaudio        0.7.2
torchvision       0.8.2
tqdm              4.61.0

Results on ETT dataset

Univariate

Data Prediction len Informer MSE Informer MAE Trans former MSE Trans former MAE Query Selector MSE Query Selector MAE MSE ratio
ETTh1 24 0.0980 0.2470 0.0548 0.1830 0.0436 0.1616 0.445
ETTh1 48 0.1580 0.3190 0.0740 0.2144 0.0721 0.2118 0.456
ETTh1 168 0.1830 0.3460 0.1049 0.2539 0.0935 0.2371 0.511
ETTh1 336 0.2220 0.3870 0.1541 0.3201 0.1267 0.2844 0.571
ETTh1 720 0.2690 0.4350 0.2501 0.4213 0.2136 0.3730 0.794
ETTh2 24 0.0930 0.2400 0.0999 0.2479 0.0843 0.2239 0.906
ETTh2 48 0.1550 0.3140 0.1218 0.2763 0.1117 0.2622 0.721
ETTh2 168 0.2320 0.3890 0.1974 0.3547 0.1753 0.3322 0.756
ETTh2 336 0.2630 0.4170 0.2191 0.3805 0.2088 0.3710 0.794
ETTh2 720 0.2770 0.4310 0.2853 0.4340 0.2585 0.4130 0.933
ETTm1 24 0.0300 0.1370 0.0143 0.0894 0.0139 0.0870 0.463
ETTm1 48 0.0690 0.2030 0.0328 0.1388 0.0342 0.1408 0.475
ETTm1 96 0.1940 0.2030 0.0695 0.2085 0.0702 0.2100 0.358
ETTm1 288 0.4010 0.5540 0.1316 0.2948 0.1548 0.3240 0.328
ETTm1 672 0.5120 0.6440 0.1728 0.3437 0.1735 0.3427 0.338

Multivariate

Data Prediction len Informer MSE Informer MAE Trans former MSE Trans former MAE Query Selector MSE Query Selector MAE MSE ratio
ETTh1 24 0.5770 0.5490 0.4496 0.4788 0.4226 0.4627 0.732
ETTh1 48 0.6850 0.6250 0.4668 0.4968 0.4581 0.4878 0.669
ETTh1 168 0.9310 0.7520 0.7146 0.6325 0.6835 0.6088 0.734
ETTh1 336 1.1280 0.8730 0.8321 0.7041 0.8503 0.7039 0.738
ETTh1 720 1.2150 0.8960 1.1080 0.8399 1.1150 0.8428 0.912
ETTh2 24 0.7200 0.6650 0.4237 0.5013 0.4124 0.4864 0.573
ETTh2 48 1.4570 1.0010 1.5220 0.9488 1.4074 0.9317 0.966
ETTh2 168 3.4890 1.5150 1.6225 0.9726 1.7385 1.0125 0.465
ETTh2 336 2.7230 1.3400 2.6617 1.2189 2.3168 1.1859 0.851
ETTh2 720 3.4670 1.4730 3.1805 1.3668 3.0664 1.3084 0.884
ETTm1 24 0.3230 0.3690 0.3150 0.3886 0.3351 0.3875 0.975
ETTm1 48 0.4940 0.5030 0.4454 0.4620 0.4726 0.4702 0.902
ETTm1 96 0.6780 0.6140 0.4641 0.4823 0.4543 0.4831 0.670
ETTm1 288 1.0560 0.7860 0.6814 0.6312 0.6185 0.5991 0.586
ETTm1 672 1.1920 0.9260 1.1365 0.8572 1.1273 0.8412 0.946

State Of Art

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

Citation

@misc{klimek2021longterm,
      title={Long-term series forecasting with Query Selector -- efficient model of sparse attention}, 
      author={Jacek Klimek and Jakub Klimek and Witold Kraskiewicz and Mateusz Topolewski},
      year={2021},
      eprint={2107.08687},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Contact

If you have any questions please contact us by email - [email protected]

Owner
MORAI
MORAI
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022