A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

Related tags

Text Data & NLPKGEval
Overview

KGEval

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

The framework and experimental results are described in Ben Rim et al. 2021 (Outstanding Paper Award, AKBC 2021).

Instructions

Create a virtual environment

virtualenv -p python3.6 eval_env
source eval_env/bin/activate
pip install -r requirements.txt

Download data

In the main folder, run:

source data/download.sh

Download model

If you want to test the framework immediately, you can download pre-trained Pykeen models by running:

source download_models.sh

Generate behavioral tests

Symmetry Tests

Can choose --dataset FB15K237, WN18RR, YAGO310

python tests/run.py --dataset FB15K237 --mode generate --capability symmetry

This should result into the following output, and the files for each test set will be added under behavioral_tests\dataset\symmetry:

2021-10-03 23:37:35,060 - [INFO] - Preparing test sets for the dataset FB15K237
2021-10-03 23:37:37,621 - [INFO] - ########################## <----TRAIN---> ############################
2021-10-03 23:37:37,621 - [INFO] - 0 repetitions removed
2021-10-03 23:37:37,621 - [INFO] - 272115 triples remaining in train set
2021-10-03 23:37:37,621 - [INFO] - 6778 symmetric triples found in train set
2021-10-03 23:37:37,786 - [INFO] - ########################## <----TEST---> ############################
2021-10-03 23:37:37,786 - [INFO] - 0 repetitions removed
2021-10-03 23:37:37,786 - [INFO] - 20466 triples remaining in test set
2021-10-03 23:37:37,786 - [INFO] - 113 symmetric triples found in test set
2021-10-03 23:37:37,806 - [INFO] - ########################## <----VALID---> ############################
2021-10-03 23:37:37,806 - [INFO] - 0 repetitions removed
2021-10-03 23:37:37,806 - [INFO] - 17535 triples remaining in valid set
2021-10-03 23:37:37,806 - [INFO] - 113 symmetric triples found in valid set
2021-10-03 23:37:39,106 - [INFO] - #################### <---TEST SET 1: MEMORIZATION ---> ##########################
2021-10-03 23:37:39,106 - [INFO] - There are 5470 entries in the memorization set (occur in both directions)
2021-10-03 23:37:39,106 - [INFO] - #################### <---TEST SET 2: ONE DIRECTION SEEN ---> ##########################
2021-10-03 23:37:39,106 - [INFO] - There are 1308 entries not shown in both directions (to be reversed for testing)
2021-10-03 23:37:39,836 - [INFO] - #################### <--- SYMMETRIC RELATIONS ---> ##########################
2021-10-03 23:37:39,836 - [INFO] - TRAIN SET contains 6778 symmetric entries
2021-10-03 23:37:39,836 - [INFO] - TEST SET contains  113 symmetric entries with 113 not in training
2021-10-03 23:37:39,836 - [INFO] - VALID SET contains 113 symmetric entries with 113 not in training
2021-10-03 23:37:39,839 - [INFO] - #################### <---TEST SET 3: UNSEEN INSTANCES ---> ##########################
2021-10-03 23:37:39,840 - [INFO] - There are 226 entries that are not seen in any direction in training
2021-10-03 23:37:40,267 - [INFO] - #################### <---TEST SET 4: ASYMMETRY ---> ##########################
2021-10-03 23:37:40,267 - [INFO] - There are 3000 asymmetric entries in test set added to test 4

Hierarchy Tests

Only available for FB15K237 dataset

python tests/run.py --dataset FB15K237 --mode generate --capability hierarchy

The output should be and will be available under behavioral_tests/dataset/hierarchy/, the naming of the files corresponds to triples where the tail belongs to a specified level. For example, 1.txt contains triples where the tail has a type of level 1 in the entity type hierarchy :

2021-10-04 01:38:13,517 - [INFO] - Results of Hierarchy Behavioral Tests for FB15K237
2021-10-04 01:38:20,367 - [INFO] - <--------------- Entity Hiararchy statistics ----------------->
2021-10-04 01:38:20,568 - [INFO] - Level 0 contains 1 types and 3415 triples
2021-10-04 01:38:20,887 - [INFO] - Level 1 contains 66 types and 2006 triples
2021-10-04 01:38:20,900 - [INFO] - Level 2 contains 136 types and 4273 triples
2021-10-04 01:38:20,913 - [INFO] - Level 3 contains 213 types and 3560 triples
2021-10-04 01:38:20,923 - [INFO] - Level 4 contains 262 types and 3369 triples

Run Tests (pykeen models)

Symmetry behavioral tests on distmult or rotate:

python tests/run.py --dataset FB15K237 --mode test --model_name rotate

The output will be printed as shown below, and will also be available in the results folder under dataset/symmetry:

2021-10-04 14:00:57,100 - [INFO] - Starting test1 with rotate model
2021-10-04 14:03:23,249 - [INFO] - On test1, MR: 1.2407678244972578, MRR: 0.9400152688974949, [email protected]: 0.9014624953269958, [email protected]: 0.988482654094696, [email protected]: 0.9965264797210693
2021-10-04 14:03:23,249 - [INFO] - Starting test2 with rotate model
2021-10-04 14:04:15,614 - [INFO] - On test2, MR: 23.446483180428135, MRR: 0.4409348919640765, [email protected]: 0.30351680517196655, [email protected]: 0.5894495248794556, [email protected]: 0.7025994062423706
2021-10-04 14:04:15,614 - [INFO] - Starting test3 with rotate model
2021-10-04 14:04:25,364 - [INFO] - On test3, MR: 1018.9469026548672, MRR: 0.04786047740344238, [email protected]: 0.008849557489156723, [email protected]: 0.06194690242409706, [email protected]: 0.12389380484819412
2021-10-04 14:04:25,365 - [INFO] - Starting test4 with rotate model
2021-10-04 14:05:38,900 - [INFO] - On test4, MR: 4901.459, MRR: 0.07606098649786266, [email protected]: 0.9496666789054871, [email protected]: 0.893666684627533, [email protected]: 0.8823333382606506

Hierarchy behavioral tests on distmult or rotate:

   python tests/run.py --dataset FB15K237 --mode test --capability hierarchy --model_name rotate

Run Tests on other models and other frameworks

(To be added)

Owner
NEC Laboratories Europe
Research software developed at NEC Laboratories Europe
NEC Laboratories Europe
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
Seonghwan Kim 24 Sep 11, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023
Shared, streaming Python dict

UltraDict Sychronized, streaming Python dictionary that uses shared memory as a backend Warning: This is an early hack. There are only few unit tests

Ronny Rentner 192 Dec 23, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
Pretty-doc - Composable text objects with python

pretty-doc from __future__ import annotations from dataclasses import dataclass

Taine Zhao 2 Jan 17, 2022
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Easy to start. Use deep nerual network to predict the sentiment of movie review.

Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1

1 Nov 19, 2021
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022