Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

Related tags

Deep Learningcoliee
Overview

COLIEE 2021 - task 2: Legal Case Entailment

This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the paper To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment. There has been mounting evidence that pretrained language models fine-tuned on large and diverse supervised datasets can transfer well to a variety of out-of-domain tasks. In this work, we investigate this transfer ability to the legal domain. For that, we participated in the legal case entailment task of COLIEE 2021, in which we use such models with no adaptations to the target domain. Our submissions achieved the highest scores, surpassing the second-best submission by more than six percentage points. Our experiments confirm a counter-intuitive result in the new paradigm of pretrained language models: that given limited labeled data, models with little or no adaption to the target task can be more robust to changes in the data distribution and perform better on held-out datasets than models fine-tuned on it.

Models

monoT5-zero-shot: We use a model T5 Large fine-tuned on MS MARCO, a dataset of approximately 530k query and relevant passage pairs. We use a checkpoint available at Huggingface’smodel hub that was trained with a learning rate of 10−3 using batches of 128 examples for 10k steps, or approximately one epoch of the MS MARCO dataset. In each batch, a roughly equal number of positive and negative examples are sampled.

monoT5: We further fine-tune monoT5-zero-shot on the COLIEE 2020 training set following a similar training procedure described for monoT5-zero-shot. The model is fine-tuned with a learning rate of 10−3 for 80 steps using batches of size 128, which corresponds to 20 epochs. Each batch has the same number of positive and negative examples.

DeBERTa: Decoding-enhanced BERT with disentangled attention(DeBERTa) improves on the original BERT and RoBERTa architectures by introducing two techniques: the disentangled attention mechanism and an enhanced mask decoder. Both improvements seek to introduce positional information to the pretraining procedure, both in terms of the absolute position of a token and the relative position between them. We fine-tune DeBERTa on the COLIEE 2020 training set following a similar training procedure described for monoT5.

DebertaT5 (Ensemble): We use the following method to combine the predictions of monoT5 and DeBERTa (both fine-tuned on COLIEE 2020 dataset): We concatenate the final set of paragraphs selected by each model and remove duplicates, preserving the highest score. It is important to note that our method does not combine scores between models. The final answer for each test example is composed of individual answers from one or both models. It ensures that only answers with a certain degree of confidence are maintained, which generally leads to an increase in precision.

Results

Model Train data Evaluation F1 Description
Median of submissions Coliee 58.60
Coliee 2nd best team Coliee 62.74
DeBERTa (ours) Coliee Coliee 63.39 Single model
monoT5 (ours) Coliee Coliee 66.10 Single model
monoT5-zero-shot (ours) MS Marco Coliee 68.72 Single model
DebertaT5 (ours) Coliee Coliee 69.12 Ensemble

In this table, we present the results. Our main finding is that our zero-shot model achieved the best result of a single model on 2021 test data, outperforming DeBERTa and monoT5, which were fine-tuned on the COLIEE dataset. As far as we know, this is the first time that a zero-shot model outperforms fine-tuned models in the task of legal case entailment. Given limited annotated data for fine-tuning and a held-out test data, such as the COLIEE dataset, our results suggest that a zero-shot model fine-tuned on a large out-of-domain dataset may be more robust to changes in data distribution and may generalize better on unseen data than models fine-tuned on a small domain-specific dataset. Moreover, our ensemble method effectively combines DeBERTa and monoT5 predictions,achieving the best score among all submissions (row 6). It is important to note that despite the performance of DebertaT5 being the best in the COLIEE competition, the ensemble method requires training time, computational resources and perhaps also data augmentation to perform well on the task, while monoT5-zero-shot does not need any adaptation. The model is available online and ready to use.

Conclusion

Based on those results, we question the common assumption that it is necessary to have labeled training data on the target domain to perform well on a task. Our results suggest that fine-tuning on a large labeled dataset may be enough.

How do I get the dataset?

Those who wish to use previous COLIEE data for a trial, please contact rabelo(at)ualberta.ca.

How do I evaluate?

As our best model is a zero-shot one, we provide only the evaluation script.

References

[1] Document Ranking with a Pretrained Sequence-to-Sequence Model

[2] DeBERTa: Decoding-enhanced BERT with Disentangled Attention

[3] ICAIL '21: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law

[4] Proceedings of the Eigth International Competition on Legal Information Extraction/Entailment

How do I cite this work?

 @article{to_tune,
    title={To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment},
    author={Moraes, Guilherme and Rodrigues, Ruan and Lotufo, Roberto and Nogueira, Rodrigo},
    journal={ICAIL '21: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law June 2021 Pages 295–300},
    url={https://dl.acm.org/doi/10.1145/3462757.3466103},
    year={2021}
}
Owner
NeuralMind
Deep Learning for NLP and image processing
NeuralMind
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022