Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Related tags

Deep LearningSB-FBSDE
Overview

Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory [ICLR 2022]

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that generalizes score-based models to fully nonlinear forward and backward diffusions.

SB-FBSDE result

This repo is co-maintained by Guan-Horng Liu and Tianrong Chen. Contact us if you have any questions! If you find this library useful, please cite ⬇️

@inproceedings{chen2022likelihood,
  title={Likelihood Training of Schr{\"o}dinger Bridge using Forward-Backward SDEs Theory},
  author={Chen, Tianrong and Liu, Guan-Horng and Theodorou, Evangelos A},
  booktitle={International Conference on Learning Representations},
  year={2022}
}

Installation

This code is developed with Python3. PyTorch >=1.7 (we recommend 1.8.1). First, install the dependencies with Anaconda and activate the environment sb-fbsde with

conda env create --file requirements.yaml python=3
conda activate sb-fbsde

Training

python main.py \
  --problem-name <PROBLEM_NAME> \
  --forward-net <FORWARD_NET> \
  --backward-net <BACKWARD_NET> \
  --num-FID-sample <NUM_FID_SAMPLE> \ # add this flag only for CIFAR-10
  --dir <DIR> \
  --log-tb 

To train an SB-FBSDE from scratch, run the above command, where

  • PROBLEM_NAME is the dataset. We support gmm (2D mixture of Gaussian), checkerboard (2D toy dataset), mnist, celebA32, celebA64, cifar10.
  • FORWARD_NET & BACKWARD_NET are the deep networks for forward and backward drifts. We support Unet, nscnpp, and a toy network for 2D datasets.
  • NUM_FID_SAMPLE is the number of generated images used to evaluate FID locally. We recommend 10000 for training CIFAR-10. Note that this requires first downloading the FID statistics checkpoint.
  • DIR specifies where the results (e.g. snapshots during training) shall be stored.
  • log-tb enables logging with Tensorboard.

Additionally, use --load to restore previous checkpoint or pre-trained model. For training CIFAR-10 specifically, we support loading the pre-trained NCSN++ as the backward policy of the first SB training stage (this is because the first SB training stage can degenerate to denoising score matching under proper initialization; see more details in Appendix D of our paper).

Other configurations are detailed in options.py. The default configurations for each dataset are provided in the configs folder.

Evaluating the CIFAR-10 Checkpoint

To evaluate SB-FBSDE on CIFAR-10 (we achieve FID 3.01 and NLL 2.96), create a folder checkpoint then download the model checkpoint and FID statistics checkpoint either from Google Drive or through the following commands.

mkdir checkpoint && cd checkpoint

# FID stat checkpoint. This's needed whenever we
# need to compute FID during training or sampling.
gdown --id 1Tm_5nbUYKJiAtz2Rr_ARUY3KIFYxXQQD 

# SB-FBSDE model checkpoint for reproducing results in the paper.
gdown --id 1Kcy2IeecFK79yZDmnky36k4PR2yGpjyg 

After downloading the checkpoints, run the following commands for computing either NLL or FID. Set the batch size --samp-bs properly depending on your hardware.

# compute NLL
python main.py --problem-name cifar10 --forward-net Unet --backward-net ncsnpp --dir ICLR-2022-reproduce
  --load checkpoint/ciifar10_sbfbsde_stage_8.npz --compute-NLL --samp-bs <BS>
# compute FID
python main.py --problem-name cifar10 --forward-net Unet --backward-net ncsnpp --dir ICLR-2022-reproduce
  --load checkpoint/ciifar10_sbfbsde_stage_8.npz --compute-FID --samp-bs <BS> --num-FID-sample 50000 --use-corrector --snr 0.15
Owner
Guan-Horng Liu
CMU RI → Uber ATG → GaTech ML
Guan-Horng Liu
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022