Chainer implementation of recent GAN variants

Overview

Chainer-GAN-lib

This repository collects chainer implementation of state-of-the-art GAN algorithms.
These codes are evaluated with the inception score on Cifar-10 dataset.
Note that our codes are not faithful re-implementation of the original paper.

How to use

Install the requirements first:

pip install -r requirements.txt

This implementation has been tested with the following versions.

python 3.5.2
chainer 4.0.0
+ https://github.com/chainer/chainer/pull/3615
+ https://github.com/chainer/chainer/pull/3581
cupy 3.0.0
tensorflow 1.2.0 # only for downloading inception model
numpy 1.11.1

Download the inception score module forked from https://github.com/hvy/chainer-inception-score.

git submodule update -i

Download the inception model.

cd common/inception
python download.py --outfile inception_score.model

You can start training with train.py.

python train.py --gpu 0 --algorithm dcgan --out result_dcgan

Please see example.sh to train other algorithms.

Quantitative evaluation

Inception Inception (Official) FID
Real data 12.0 11.24 3.2 (train vs test)
Progressive 8.5 8.8 19.1
SN-DCGAN 7.5 7.41 23.6
WGAN-GP 6.8 7.86 (ResNet) 28.2
DFM 7.3 7.72 30.1
Cramer GAN 6.4 - 32.7
DRAGAN 7.1 6.90 31.5
DCGAN-vanilla 6.7 6.16 [WGAN2] 6.99 [DRAGAN] 34.3
minibatch discrimination 7.0 6.86 (-L+HA) 31.3
BEGAN 5.4 5.62 84.0

Inception scores are calculated by average of 10 evaluation with 5000 samples.

FIDs are calculated with 50000 train dataset and 10000 generated samples.

Generated images

  • Progressive

progressive

  • SN-DCGAN

sndcagn

  • WGAN-GP

wgangp

  • DFM

dfm

  • Cramer GAN

cramer

  • DRAGAN

dragan

  • DCGAN

dcgan

  • Minibatch discrimination

minibatch_dis

  • BEGAN

began

License

MIT License. Please see the LICENSE file for details.

Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022