Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Related tags

Deep LearningGNAS-MP
Overview

Rethinking Graph Neural Architecture Search from Message-passing

Intro

The GNAS can automatically learn better architecture with the optimal depth of message passing on the graph. Specifically, we design Graph Neural Architecture Paradigm (GAP) with tree-topology computation procedure and two types of fine-grained atomic operations (feature filtering & neighbor aggregation) from message-passing mechanism to construct powerful graph network search space. Feature filtering performs adaptive feature selection, and neighbor aggregation captures structural information and calculates neighbors’ statistics. Experiments show that our GNAS can search for better GNNs with multiple message-passing mechanisms and optimal message-passing depth.

Getting Started

0. Prerequisites

  • Linux
  • NVIDIA GPU + CUDA CuDNN

1. Setup Python environment for GPU

# clone Github repo
conda install git
git clone https://github.com/phython96/GNAS-MP.git
cd GNAS-MP

# Install python environment
conda env create -f environment_gpu.yml
conda activate gnas

2. Download datasets

The datasets are provided by project benchmarking-gnns, you can click here to download all the required datasets.

3. Searching

We have provided scripts for easily searching graph neural networks on five datasets.

# searching on ZINC dataset at graph regression task
sh scripts/search_molecules_zinc.sh [gpu_id]

# searching on SBMs_PATTERN dataset at node classification task
sh scripts/search_sbms_pattern.sh [gpu_id]

# searching on SBMs_CLUSTER dataset at node classification task
sh scripts/search_sbms_cluster.sh [gpu_id]

# searching on MNIST dataset at graph classification task
sh scripts/search_superpixels_mnist.sh [gpu_id]

# searching on CIFAR10 dataset at graph classification task
sh scripts/search_superpixels_cifar10.sh [gpu_id]

When the search procedure is finished, you need to copy the searched genotypes from file "./save/[data_name]_search.txt" to "./configs/genotypes.py".

For example, we have searched on MNIST dataset, and obtain genotypes result file "./save/MNIST_search.txt".

Epoch : 19
[Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_dense', 9, 7)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 0), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_identity', 9, 4)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 1), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_identity', 8, 7), ('f_sparse', 9, 4)], concat_node=None)]
Epoch : 20
[Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_dense', 8, 4), ('f_sparse', 9, 6)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_sparse', 9, 8)], concat_node=None)]
Epoch : 21
[Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 0), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_identity', 9, 6)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 4), ('f_identity', 9, 7)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_identity', 9, 4)], concat_node=None)]

Copy the fourth line from the above file and paste it into "./configs/genotypes.py" with the prefix "MNIST = ".

MNIST_Net = [Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_dense', 8, 4), ('f_sparse', 9, 6)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_sparse', 9, 8)], concat_node=None)]

4. Training

Before training, you must confim that there is a genotype of searched graph neural network in file "./configs/genotypes.py".

We provided scripts for easily training graph neural networks searched by GNAS.

# training on ZINC dataset at graph regression task
sh scripts/train_molecules_zinc.sh [gpu_id]

# training on SBMs_PATTERN dataset at node classification task
sh scripts/train_sbms_pattern.sh [gpu_id]

# training on SBMs_CLUSTER dataset at node classification task
sh scripts/train_sbms_cluster.sh [gpu_id]

# training on MNIST dataset at graph classification task
sh scripts/train_superpixels_mnist.sh [gpu_id]

# training on CIFAR10 dataset at graph classification task
sh scripts/train_superpixels_cifar10.sh [gpu_id]

Results

Visualization

Here, we show 4-layer graph neural networks searched by GNAS on five datasets at three graph tasks.

Reference

to be updated

Owner
Shaofei Cai
Retired ICPC contestant, classic algorithm enthusiast.
Shaofei Cai
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022