Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

Overview


This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers more flexibility when using our training scripts, while also making it easier to adapt our code contributions into other projects.

Why DinkyTrain?

The Dinky runs between Princeton Junction and Princeton and is the shortest scheduled commuter rail line in the United States. We also aim to make pre-training short and accessible to everyone.

Our Contributions

  • DeepSpeed transformer kernel integration
  • A training recipe for efficient MLM pre-training
  • An easy-to-follow guideline of using fairseq for MLM pre-training.

Other fairseq features:

See the fairseq repo and its documentation for more details on how to use and extend fairseq.

DinkyTrain for Efficient MLM Pre-training

Quick Links

Overview

You can reproduce the pre-training experiments of our recent paper Should You Mask 15% in Masked Language Modeling?, where we find that higher masking rates can lead to more efficient pre-training.

Installation

  • PyTorch version >= 1.5.0
  • Python version >= 3.6
  • To install fairseq and develop locally:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
  • For faster training (FP16) install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
  • For faster training (DeepSpeed cuda kernel) install DeepSpeed library and compile the DeepSpeed kernel
DS_BUILD_TRANSFORMER=1 DS_BUILD_STOCHASTIC_TRANSFORMER=1 pip install deepspeed
  • For large datasets install PyArrow: pip install pyarrow
  • If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run .

Trouble-shooting:

  • If using lower version of Python, you might encounter import problems with importlib.metadata. Try pip install importlib-metadata.
  • To install apex and deepspeed, you will need nvcc (CUDA compiler).
  • When installing apex, if you encounter the error Cuda extensions are bing compiled with a version of Cuda that does not match ..., go to setup.py and comment out the line that raised the error (at your own risk).
  • Both apex and deepspeed installation require a high gcc version to support c++14. If you encounter relevant errors, update your gcc.

Data Pre-processing

Tokenization: First, download the GPT2 BPE vocabulary:

wget -O gpt2_bpe/encoder.json https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
wget -O gpt2_bpe/vocab.bpe https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe

Then, tokenize your raw data:

python -m examples.roberta.multiprocessing_bpe_encoder \
    --encoder-json gpt2_bpe/encoder.json \
    --vocab-bpe gpt2_bpe/vocab.bpe \
    --inputs ${SPLIT}.raw \
    --outputs ${SPLIT}.bpe \
    --keep-empty \
    --workers 8

Finally, index and binarize your data:

fairseq-preprocess \
    --only-source \
    --srcdict gpt2_bpe/dict.txt \
    --trainpref ${TRAIN_SPLIT}.bpe \
    --validpref ${VALID_SPLIT}.bpe \
    --testpref ${TEST_SPLIT}.bpe \
    --destdir output-bin \
    --workers 8

Alternatively: Use our pre-processed data: We preprocessed Wikipedia+BookCorpus and shared it on Huggingface dataset. It is ~22GB and contains two epochs of data, each epoch being sliced into 8 shards. You can download it using git:

git lfs install # Git lfs is needed for downloading
git clone https://huggingface.co/datasets/princeton-nlp/wikibook_fairseq_format

Pre-training

Use our script for efficient pre-training

GPU={number of GPUs} DATA_DIR={data path} [DEEPSPEED=1] bash run_efficient_mlm_recipe.sh

Flags explained

  • GPU: number of GPUs.
  • DATA_DIR: directory to the processed pre-training data. If you are using our preprocessed dataset, DATA_DIR should be:
DATA_DIR=$(seq 0 15 | sed -e 's/^/wikibook_fairseq_format\/bin-shard/' | sed -e 's/$/-8/' | paste -sd ':')
  • DEEPSPEED (optional): if set to 1, the DeepSpeed CUDA kernel will be used.

Please refer to the script for more hyperparameter choices.

Fine-tuning on GLUE and SQuAD

All our checkpoints can be converted to HuggingFace transformers models (see next nextion) and use the transformers package for fine-tuning. Fairseq also supports fine-tuning on GLUE.

First, download the preprocessed GLUE data (you can also process by yourself following the preprocess section above):

git lfs install # Git lfs is needed for downloading
git clone https://huggingface.co/datasets/princeton-nlp/glue_fairseq_format

Then use the following script for fine-tuning

DATA_DIR={path to the data directory} \
TASK={glue task name (mnli qnli qqp rte sst2 mrpc cola stsb)} \
LR={learning rate} \
BSZ={batch size} \
EPOCHS={number of epochs} \
SEED={random seed} \
CKPT_DIR={checkpoint's directory} \
CKPT_NAME={checkpoint's name} \
[DEEPSPEED=1] bash finetune_glue.sh

For fine-tuning on SQuAD, please convert the models to HuggingFace checkpoints following the next section and use HuggingFace's examples.

Convert to HuggingFace

We also provide conversion codes so that you can easily turn Fairseq checkpoints into HuggingFace checkpoints. Usage:

cd scripts
[PRELAYERNORM=1] [FROM_DS=1] python convert_fs_ckpt_to_hf_ckpt.py --fr {fairseq checkpoint} --to {huggingface checkpoint path} --hf_model_config {roberta-base/roberta-large}

Flags explained:

  • PRELAYERNORM=1: Using pre layer-norm (default is post layer-norm).
  • FROM_DS=1: The Fairseq checkpoint uses DeepSpeed's cuda kernel.
  • --fr: The path to the Fairseq checkpoint.
  • --to: The path you want to save the HuggingFace checkpoint to.
  • --hf_model_config: roberta-base or roberta-large.

IMPORTANT: all our models use pre layer norm, which is not supported by HuggingFace yet. To use it, import the model class from huggingface/modeling_roberta_prelayernorm.py. For example:

from huggingface.modeling_roberta_prelayernorm import RobertaForSequenceClassification

For more configuration, please refer to convert_fs_ckpt_to_hf_ckpt.py.

Model List

Here are the HuggingFace checkpoints of our models in the paper Should You Mask 15% in Masked Language Modeling. Results are development set performance.

Model MNLI QNLI QQP SST-2
princeton-nlp/efficient_mlm_m0.15 84.2 90.9 87.8 93.3
princeton-nlp/efficient_mlm_m0.20 84.1 91.3 87.9 92.7
princeton-nlp/efficient_mlm_m0.30 84.2 91.6 88.0 93.0
princeton-nlp/efficient_mlm_m0.40 84.5 91.6 88.1 92.8
princeton-nlp/efficient_mlm_m0.50 84.1 91.1 88.1 92.7
princeton-nlp/efficient_mlm_m0.60 83.2 90.7 87.8 92.6
princeton-nlp/efficient_mlm_m0.70 82.3 89.4 87.5 91.9
princeton-nlp/efficient_mlm_m0.80 80.8 87.9 87.1 90.5
princeton-nlp/efficient_mlm_m0.15-801010 83.7 90.4 87.8 93.2
princeton-nlp/efficient_mlm_m0.40-801010 84.3 91.2 87.9 93.0

We also offer the original (deepspeed) fairseq checkpoints here.

Bugs or Questions?

If you hav an questions, or encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@article{wettig2022should,
   title={Should You Mask 15% in Masked Language Modeling?},
   author={Wettig, Alexander and Gao, Tianyu and Zhong, Zexuan and Chen, Danqi},
   boo={arXiv preprint arXiv:2202.08005},
   year={2022}
}

Acknowledgment

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 48–53.

  • Our efficient training recipe is based on the following paper:

Peter Izsak, Moshe Berchansky, and Omer Levy. 2021. How to train BERT with an academic budget. In Empirical Methods in Natural Language Processing (EMNLP), pages 10644–10652.

Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Udit Arora 19 Oct 28, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 02, 2023