Reusable constraint types to use with typing.Annotated

Overview

annotated-types

CI pypi versions license

PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] should be treated as T by any tool or library without special logic for x.

This package provides metadata objects which can be used to represent common constraints such as upper and lower bounds on scalar values and collection sizes, a Predicate marker for runtime checks, and non-normative descriptions of how we intend these metadata to be interpreted. In some cases, we also note alternative representations which do not require this package.

Install

pip install annotated-types

Examples

from typing import Annotated
from annotated_types import Gt, Len

class MyClass:
    age: Annotated[int, Gt(18)]                         # Valid: 19, 20, ...
                                                        # Invalid: 17, 18, "19", 19.0, ...
    factors: list[Annotated[int, Predicate(is_prime)]]  # Valid: 2, 3, 5, 7, 11, ...
                                                        # Invalid: 4, 8, -2, 5.0, "prime", ...

    my_list: Annotated[list[int], 0:10]                 # Valid: [], [10, 20, 30, 40, 50]
                                                        # Invalid: (1, 2), ["abc"], [0] * 20
    your_set: Annotated[set[int], Len(0, 10)]           # Valid: {1, 2, 3}, ...
                                                        # Invalid: "Well, you get the idea!"

Documentation

While annotated-types avoids runtime checks for performance, users should not construct invalid combinations such as MultipleOf("non-numeric") or Annotated[int, Len(3)]. Downstream implementors may choose to raise an error, emit a warning, silently ignore a metadata item, etc., if the metadata objects described below are used with an incompatible type - or for any other reason!

Gt, Ge, Lt, Le

Express inclusive and/or exclusive bounds on orderable values - which may be numbers, dates, times, strings, sets, etc. Note that the boundary value need not be of the same type that was annotated, so long as they can be compared: Annotated[int, Gt(1.5)] is fine, for example, and implies that the value is an integer x such that x > 1.5. No interpretation is specified for special values such as nan.

We suggest that implementors may also interpret functools.partial(operator.le, 1.5) as being equivalent to Gt(1.5), for users who wish to avoid a runtime dependency on the annotated-types package.

To be explicit, these types have the following meanings:

  • Gt(x) - value must be "Greater Than" x - equivalent to exclusive minimum
  • Ge(x) - value must be "Greater than or Equal" to x - equivalent to inclusive minimum
  • Lt(x) - value must be "Less Than" x - equivalent to exclusive maximum
  • Le(x) - value must be "Less than or Equal" to x - equivalent to inclusive maximum

Interval

Interval(gt, ge, lt, le) allows you to specify an upper and lower bound with a single metadata object. None attributes should be ignored, and non-None attributes treated as per the single bounds above.

MultipleOf

MultipleOf(multiple_of=x) might be interpreted in two ways:

  1. Python semantics, implying value % multiple_of == 0, or
  2. JSONschema semantics, where int(value / multiple_of) == value / multiple_of.

We encourage users to be aware of these two common interpretations and their distinct behaviours, especially since very large or non-integer numbers make it easy to cause silent data corruption due to floating-point imprecision.

We encourage libraries to carefully document which interpretation they implement.

Len

Len() implies that min_inclusive <= len(value) < max_exclusive. We recommend that libraries interpret slice objects identically to Len(), making all the following cases equivalent:

  • Annotated[list, :10]
  • Annotated[list, 0:10]
  • Annotated[list, None:10]
  • Annotated[list, slice(0, 10)]
  • Annotated[list, Len(0, 10)]
  • Annotated[list, Len(max_exclusive=10)]

And of course you can describe lists of three or more elements (Len(min_inclusive=3)), four, five, or six elements (Len(4, 7) - note exclusive-maximum!) or exactly eight elements (Len(8, 9)).

Implementors: note that Len() should always have an integer value for min_inclusive, but slice objects can also have start=None.

Timezone

Timezone can be used with a datetime or a time to express which timezones are allowed. Annotated[datetime, Timezone[None]] must be a naive datetime. Timezone[...] (literal ellipsis) expresses that any timezone-aware datetime is allowed. You may also pass a specific timezone string or timezone object such as Timezone[timezone.utc] or Timezone["Africa/Abidjan"] to express that you only allow a specific timezone, though we note that this is often a symptom of fragile design.

Predicate

Predicate(func: Callable) expresses that func(value) is truthy for valid values. Users should prefer the statically inspectable metadata above, but if you need the full power and flexibility of arbitrary runtime predicates... here it is.

We provide a few predefined predicates for common string constraints: IsLower = Predicate(str.islower), IsUpper = Predicate(str.isupper), and IsDigit = Predicate(str.isdigit). Users are encouraged to use methods which can be given special handling, and avoid indirection like lambda s: s.lower().

Some libraries might have special logic to handle known or understandable predicates, for example by checking for str.isdigit and using its presence to both call custom logic to enforce digit-only strings, and customise some generated external schema.

We do not specify what behaviour should be expected for predicates that raise an exception. For example Annotated[int, Predicate(str.isdigit)] might silently skip invalid constraints, or statically raise an error; or it might try calling it and then propogate or discard the resulting TypeError: descriptor 'isdigit' for 'str' objects doesn't apply to a 'int' object exception. We encourage libraries to document the behaviour they choose.

Design & History

This package was designed at the PyCon 2022 sprints by the maintainers of Pydantic and Hypothesis, with the goal of making it as easy as possible for end-users to provide more informative annotations for use by runtime libraries.

It is deliberately minimal, and following PEP-593 allows considerable downstream discretion in what (if anything!) they choose to support. Nonetheless, we expect that staying simple and covering only the most common use-cases will give users and maintainers the best experience we can. If you'd like more constraints for your types - follow our lead, by defining them and documenting them downstream!

Comments
  • add GroupedMetadata as a base class for Interval

    add GroupedMetadata as a base class for Interval

    The main idea here is to generalize the pattern in Interval so that Pydantic and similar can define their Field as inheriting from GroupedMetadata, thus anything that can parse annotated-types will know how to unpack it (if it is not already unpacked by the PEP-646) even if it is a custom subclass in a library like Pydantic.

    Without this, some generic annotated-types parser would not know how to handle Pydantic's Field type without specific knowledge of Pydantic.

    opened by adriangb 19
  • I think we should remove `Regex`

    I think we should remove `Regex`

    I tried writing up Regex docs that would describe how people actually want to use them, and...

    Regex(regex_pattern=p, regex_flags=x) implies that the string should contain a match for p with flags x, at any position in the string. If you want the full string to match, or the match to be at the start or end of the string, you can use boundary markers like ^...$.

    Regex() can be used with unicode strings or byte strings; if either are allowed we suggest using one Regex() item for each type, and therefore ignoring Regex() items with the wrong string type.

    We do not specify the pattern syntax: libraries may choose to interpret it as the Python stdlib re module, regex package, ECMAscript syntax, etc., and we encourage them to clearly document their chosen interpretation. The meaning of the regex_flags argument is also implementation-defined.

    I think this is sufficiently-implementation-defined that we should just, well, make downstream implementations define their own Regex metadata with more precise semantics. Either that, or we explicitly separate PythonRegex(pattern: str|bytes, flags: int) from JSONschemaRegex(pattern: str) and make people choose one.

    opened by Zac-HD 14
  • Switch to hatchling & pip-tools

    Switch to hatchling & pip-tools

    poetry was annoying me, also it's lock file was out of date.

    Changes here:

    • use hatchling for build
    • use pip-compile (from pip-tools) to lock linting and testing requirements
    • tweak pre-commit
    • use pre-commit for linting
    • check github ref before release
    • add python 3.11 classifier
    • remove CI caching - seems to reduce CI time from ~1m20 to <20seconds, also simplifies CI setup
    opened by samuelcolvin 8
  • Magic syntax for constraints: `X > 5` -> `Gt(5)`, etc.

    Magic syntax for constraints: `X > 5` -> `Gt(5)`, etc.

    Closes #28; needs some more tests for validation errors and edge cases if we decide to go for it, and of course documentation.

    Importantly, adding most of the magic to our existing Interval and Len classes means that we can keep the API surface minimal, without exposing 'incomplete constraint' objects that don't really mean anything. Note that I've set this up to error out immediately if you try using the comparison magics on something which already represents a constraint. You can still do e.g. Interval(gt=3) < 5; this seems weird but OK to me in that it's very clear what it does and there's no duplication of bounds.

    opened by Zac-HD 6
  • ImportError: cannot import name 'Gt' from 'annotated_types'

    ImportError: cannot import name 'Gt' from 'annotated_types'

    Hi,

    I got an ImportError when I was trying to import Gt:

    ImportError: cannot import name 'Gt' from 'annotated_types'
        (/root/venv/lib/python3.9/site-packages/annotated_types/__init__.py)
    

    I tried installing and using the package on my personal computer (Python 3.9.12) and an EC2 instance (Python 3.9.13). The same error showed. I am wondering how to solve the problem.

    Thanks!

    opened by ychen878 6
  • use type aliases for shorthand constraints

    use type aliases for shorthand constraints

    https://github.com/annotated-types/annotated-types/pull/5#issuecomment-1118094109

    I think these names make more sense when they're wrapping the type, but I'm happy to keep the old ones

    opened by adriangb 6
  • Rethink `max_exclusive`, convert to `max_inclusive`?

    Rethink `max_exclusive`, convert to `max_inclusive`?

    If we have MaxLen, and (in pydantic at least) that can be set via a max_length argument.

    I really think this should mean "maximum inclusive", not "maximum exclusive" as currently documented.

    This matches (IMHO) much better people's assumption about what MaxLen(5) or max_length=5 or Len(0, 5) means:

    "The airbnb allows maximum 5 guests", you would assume 5 guests were allowed, not just 4

    If for the sake of correctness, that involves either:

    • treating slices differently
    • or, removing the recommendation on allowing slices

    That's sad, but I think a price worth paying.

    At the end of the way max_length=5 meaning any length up to 4, won't fly in pydantic.

    opened by samuelcolvin 5
  • Operator based `BaseMetadata` creation

    Operator based `BaseMetadata` creation

    Hi all, I really like the idea of BaseMetadata to formulate Annotated types.

    However, configuration using functions such as Gt(10) is not as easy as x > 10 to read. It would be nice to provide a non-constraint class All and support methods such as __gt__ like below.

    class All(BaseMetadata):
        def __gt__(self, other):
            return Gt(other)
    
    X = All()  # could be better to keep `All` private and provide `X` publically.
    Annotated[int, X > 5]  # equivalent to Annotated[int, Gt(5)]
    

    Similar logic can by applied to construct several objects.

    • Interval from 2 < X < 5
    • MultipleOf from X % 3 == 0
    • MaxLen from X.len() <= 10
    opened by hanjinliu 4
  • Chained constraints

    Chained constraints

    Thought from #28: we could also do something like Exponent = Annotated[int, Gt(0) & MultipleOf(2)].

    Implementing & would be easy: it just creates a GroupedMetadata.

    Other operators would be trickier: Annotated[str, Foo | Bar] should actually be expressed as Annotated[str, Bar] | Annotated[str, Foo], and I have no idea what XOR would be, I think we’d have to offload that to implementers. So I think this idea has short legs.

    opened by adriangb 2
  • Use `any()` instead of for loop & Invert `any/all` to simplify comparisons

    Use `any()` instead of for loop & Invert `any/all` to simplify comparisons

    Using Python's any() and all() built-in functions is a more concise way of doing this than using a for a loop.

    any() will return True when at least one of the elements evaluates to True, all() will return True only when all the elements evaluate to True.

    opened by yezz123 2
  • List of annotations vs. nested annotations

    List of annotations vs. nested annotations

    Hello, I was brought here from https://github.com/samuelcolvin/pydantic/discussions/4110.

    Perhaps this feature is already available or on the drawing-board, but I just wanted to say that it would be very useful if the user could provide a list of type-annotations like this:

    age: Annotated[int, [Gt(18), Lt(35)]]
    

    instead of having to recursively nest the annotations like this (although this should also be possible in case that might be useful in some applications):

    age: Annotated[Annotated[int, Gt(18)], Lt(35)]
    

    Thanks!

    opened by Hvass-Labs 2
Releases(v0.4.0)
  • v0.4.0(Oct 12, 2022)

    What's Changed

    • Switch to hatchling & pip-tools by @samuelcolvin in https://github.com/annotated-types/annotated-types/pull/22
    • convert Len to GroupedMetadata, add MinLen and MaxLen by @samuelcolvin in https://github.com/annotated-types/annotated-types/pull/21
    • switch from max_exclusive to max_length (inclusive) by @samuelcolvin in https://github.com/annotated-types/annotated-types/pull/24

    Full Changelog: https://github.com/annotated-types/annotated-types/compare/v0.3.1...v0.4.0

    Source code(tar.gz)
    Source code(zip)
  • v0.3.1(Sep 25, 2022)

    What's Changed

    • Add BaseMetadata to __all__ by @samuelcolvin in https://github.com/annotated-types/annotated-types/pull/19

    Full Changelog: https://github.com/annotated-types/annotated-types/compare/v0.3.0...v0.3.1

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Sep 25, 2022)

    What's Changed

    • Remove regex from tests by @adriangb in https://github.com/annotated-types/annotated-types/pull/13
    • add GroupedMetadata as a base class for Interval by @adriangb in https://github.com/annotated-types/annotated-types/pull/12
    • Remove regex from tests (again) by @adriangb in https://github.com/annotated-types/annotated-types/pull/14
    • use init_subclass instead of ABC by @adriangb in https://github.com/annotated-types/annotated-types/pull/16
    • add docs for GroupedMetadata and BaseMetadata by @adriangb in https://github.com/annotated-types/annotated-types/pull/15

    Full Changelog: https://github.com/annotated-types/annotated-types/compare/v0.2.0...v0.3.0

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jun 15, 2022)

The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023