Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Overview

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop)

(Pronounced as "strog")

Paper

Arxiv

Why it matters?

Scene Text Recognition (STR) requires data augmentation functions that are different from object recognition. STRAug is data augmentation designed for STR. It offers 36 data augmentation functions that are sorted into 8 groups. Each function supports 3 levels or magnitudes of severity or intensity.

Given a source image:

it can be transformed as follows:

  1. warp.py - to generate Curve, Distort, Stretch (or Elastic) deformations
Curve Distort Stretch
  1. geometry.py - to generate Perspective, Rotation, Shrink deformations
Perspective Rotation Shrink
  1. pattern.py - to create different grids: Grid, VGrid, HGrid, RectGrid, EllipseGrid
Grid VGrid HGrid RectGrid EllipseGrid
  1. blur.py - to generate synthetic blur: GaussianBlur, DefocusBlur, MotionBlur, GlassBlur, ZoomBlur
GaussianBlur DefocusBlur MotionBlur GlassBlur ZoomBlur
  1. noise.py - to add noise: GaussianNoise, ShotNoise, ImpulseNoise, SpeckleNoise
GaussianNoise ShotNoise ImpulseNoise SpeckleNoise
  1. weather.py - to simulate certain weather conditions: Fog, Snow, Frost, Rain, Shadow
Fog Snow Frost Rain Shadow
  1. camera.py - to simulate camera sensor tuning and image compression/resizing: Contrast, Brightness, JpegCompression, Pixelate
Contrast Brightness JpegCompression Pixelate
  1. process.py - all other image processing issues: Posterize, Solarize, Invert, Equalize, AutoContrast, Sharpness, Color
Posterize Solarize Invert Equalize
AutoContrast Sharpness Color

Pip install

pip3 install straug

How to use

Command line (e.g. input image is nokia.png):

>>> from straug.warp import Curve
>>> from PIL import Image
>>> img = Image.open("nokia.png")
>>> img = Curve()(img, mag=3)
>>> img.save("curved_nokia.png")

Python script (see test.py):

python3 test.py --image=<target image>

For example:

python3 test.py --image=images/telekom.png

The corrupted images are in results directory.

Reference

  • Image corruptions (eg blur, noise, camera effects, fog, frost, etc) are based on the work of Hendrycks et al.

Citation

If you find this work useful, please cite:

@inproceedings{atienza2021data,
  title={Data Augmentation for Scene Text Recognition},
  author={Atienza, Rowel},
  booktitle = {IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)},
  year={2021},
  pubstate={published},
  tppubtype={inproceedings}
}
Owner
Rowel Atienza
Rowel Atienza
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022