The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

Overview

IFood MLE Test

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

https://github.com/ifood/ifood-data-ml-engineer-test

Projeto: API para servir modelos com Flask, Gunicorn e Docker

Autor: George Rocha

Estrutura do projeto:

.
├── AutoML
│   └── AutoML_h2o.ipynb
├── AWS_infra
│   └── AWS Infrastructure.pdf
├── IFood_API
│   ├── docs
│   │   ├── Document Live.txt
│   │   └── Document Static.html
│   ├── flask_docker
│   │   ├── Dockerfile
│   │   ├── exec.py
│   │   ├── mls.py
│   │   ├── my_app.py
│   │   ├── path.json
│   │   ├── requirements.txt
│   │   ├── setup.py
│   │   └── wsgi.py
│   └── notebook
│       └── example.ipynb
└── READ.me

Installation

Dependencies, this application requires:

Python (>= 3.7)
Docker (= 20.10.12)

Please follow the link bellow for more information on docker:

https://docs.docker.com/engine/install/ubuntu/

Alteração da url de origem dos dados

Para alterar as origens e destinos dos arquivos salvos, favor alterar o arquivo path.json onde:

"modeldata": dados como informações salvas pelo AutoML, info, modelos, arquivos de teste,
"procdata": dados como dados pre processados que serão utilizados para treinar e validar o modelo

Abaixo segue um exemplo:

{	
"modeldata":"https://s3model.blob.core.windows.net/modeldata/",
"procdata":"https://s3model.blob.core.windows.net/prodata/"
}

Execução

No diretório /IFood_ML/IFood_API/flask_docker/ digite no terminal o seguinte comando:

python setup.py

A última linha mostrará a porta que o docker fez o bind com o host. Exemplo:

8000/tcp, :::49171->8000/tcp serene_matsumoto">
CONTAINER ID   IMAGE          COMMAND             CREATED         STATUS                  PORTS                                         NAMES
ac5bb0615e0a   flask_docker   "python3 exec.py"   2 seconds ago   Up Less than a second   0.0.0.0:49171->8000/tcp, :::49171->8000/tcp   serene_matsumoto

Documentation

https://app.swaggerhub.com/apis-docs/george53/MLS/1.0.0

AutoML

Executar o notebook IFood_AutoML_h2o no diretório AutoML para criar um modelo, tempo para criação de um minuto na configuração atual.


Exemplo:

Executar o notebook exemplo.ipynb IFood_ML/IFood_API/notebooks para enviar e receber os dados.

Get:

  pd.read_json(requests.get('http://0.0.0.0:49171/').content)

Post:

  r = requests.post('http://0.0.0.0:49171/', data=data).content
  
  prediction = pd.read_json(r)

Owner
George Rocha
George Rocha
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Ludwig Benchmarking Toolkit

Ludwig Benchmarking Toolkit The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an

HazyResearch 17 Nov 18, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022