EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Overview

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein

EMNLP 2021 Findings, https://arxiv.org/abs/2104.04670

Data

Please download the dataset from here: https://drive.google.com/file/d/1hrLlpk6Pla95Bnv_e1MAhCx7uJSDgA-w/view?usp=sharing

If you are using this dataset, please cite all the papers in the custom_citations.txt, anthology_citations.txt, urls.txt file in the citations folder. Thanks!

Each datapoint is represented as a dictionary.

{"q": [label description], "c": [text input], "a": [0 or 1]},

where "q" stands for question, which contains label information, "c" stands for context, which contains the input text, "a" stands for answer, which is either 1 (Yes) or 0 (No).

training_dicts/ contains all the datasets for training, and each of the .pkl file is a list of datapoints. testing_dicts/ contains all the datasets for evaluation, and each of the .pkl file is a map from (label, label descriptions) to a list of datapoints.

Datasets that have the same group number in front of their filenames are considered similar. Notice that, for each dataset, there might be overlapping datapoints between the training and testing split, but it is okay since we never train and test on the same dataset.

Additionally, to speedup evaluation, we performed subsampling for many of the test datasets, so the numbers will not be directly comparable to those in the other paper.

Specialized Models are Better

Meta-tune a model that is initialized with T5-large and test it on unseen (non-similar) datasets

python3 default_train.py large

Test UnifiedQA on all datatsets used for evaluation

python3 baseline.py large

Evaluate and compare the meta-tuned model and the UnifiedQA baseline with AUC-ROC for each label description.

python3 evaluate_and_plot.py large

We should expect to see that meta-tuned model is better than the UnifiedQA model on the majority of label descriptions.

Larger Models are Better

We can train another smaller-sized model using the command

python3 default_train.py base

and then we can compare the large vs. base model modifying evaluate_and_plot.py.

Owner
Ruiqi Zhong
Berkeley NLP Group
Ruiqi Zhong
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023