How to detect objects in real time by using Jupyter Notebook and Neural Networks , by using Yolo3

Overview

Real Time Object Recognition From your Screen Desktop .

In this post, I will explain how to build a simply program to detect objects from you desktop computer.

We will see how using OpenCV and Python, we can detect objects by applying the most popular YOLO(You Look Only Once) algorithm.

OpenCV is the computer vision library/ framework that we we will be using to support our YOLOv3 algorithm

Darknet Architecture is pre-trained model for classifying 80 different classes. Our goal now is that we will use Darknet(YOLOv3) in OpenCV to classify objects using Python language.

For this project we will consider an standard resolution 1920 x 1080 , in windows 10 in Display Setting , select the resolution 1920 x 1080

Then you need to install Anaconda at this link

img

After you install it , check that your terminal , recognize conda

C:\conda --version
conda 4.10.3

The environments supported that I will consider is Python 3.7, Keras 2.4.3 and TensorFlow 2.4.0, let us create the environment, go to you command promt terminal and type the following:

conda create -n detector python==3.7.10
conda activate detector

then in your terminal type the following commands:

conda install ipykernel
Proceed ([y]/n)? y
python -m ipykernel install --user --name detector --display-name "Python (Object Detector)"

Then we install the correct versions of the the Tensorflow, and Numpy and Keras

we create a file called requirements.txt

if your are in Windows

notepad requirements.txt

or Linux

nano  requirements.txt

and you paste the following lines

Keras==2.4.3
keras-resnet==0.2.0
numpy==1.19.3
opencv-python==3.4.2.17
tensorflow==2.4.0
tensorflow-estimator==2.4.0
tensorflow-gpu==2.4.0
Pillow==9.0.0

and then we return back to the terminal and install them

pip install -r requirements.txt

then open the Jupyter notebook with the command

jupyter notebook&

then you click create new notebook Python (Object Detector) and then you can test if you can import the the following libraries

import numpy as np
from PIL import ImageGrab
import cv2
import time
import win32gui, win32ui, win32con, win32api

The next step is is define a function that enable record you screen

def grab_screen(region=None):
    hwin = win32gui.GetDesktopWindow()
    if region:
            left,top,x2,y2 = region
            width = x2 - left + 1
            height = y2 - top + 1
    else:
        width = win32api.GetSystemMetrics(win32con.SM_CXVIRTUALSCREEN)
        height = win32api.GetSystemMetrics(win32con.SM_CYVIRTUALSCREEN)
        left = win32api.GetSystemMetrics(win32con.SM_XVIRTUALSCREEN)
        top = win32api.GetSystemMetrics(win32con.SM_YVIRTUALSCREEN)
    hwindc = win32gui.GetWindowDC(hwin)
    srcdc = win32ui.CreateDCFromHandle(hwindc)
    memdc = srcdc.CreateCompatibleDC()
    bmp = win32ui.CreateBitmap()
    bmp.CreateCompatibleBitmap(srcdc, width, height)
    memdc.SelectObject(bmp)
    memdc.BitBlt((0, 0), (width, height), srcdc, (left, top), win32con.SRCCOPY)
    signedIntsArray = bmp.GetBitmapBits(True)
    img = np.fromstring(signedIntsArray, dtype='uint8')
    img.shape = (height,width,4)
    srcdc.DeleteDC()
    memdc.DeleteDC()
    win32gui.ReleaseDC(hwin, hwindc)
    win32gui.DeleteObject(bmp.GetHandle())
    return cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)

then you define a new function called main() which will record your screen

def main():
    last_time = time.time()
    while True:
        # 1920 windowed mode
        screen = grab_screen(region=(0,40,1920,1120))
        img = cv2.resize(screen,None,fx=0.4,fy=0.3)
        height,width,channels = img.shape
        #detecting objects
        blob = cv2.dnn.blobFromImage(img,0.00392,(416,416),(0,0,0),True,crop=False)
        net.setInput(blob)
        outs = net.forward(outputlayers)
        #Showing info on screen/ get confidence score of algorithm in detecting an object in blob
        class_ids=[]
        confidences=[]
        boxes=[]
        for out in outs:
            for detection in out:
                scores = detection[5:]
                class_id = np.argmax(scores)
                confidence = scores[class_id]
                if confidence > 0.5:
                    #onject detected
                    center_x= int(detection[0]*width)
                    center_y= int(detection[1]*height)
                    w = int(detection[2]*width)
                    h = int(detection[3]*height)
                    #rectangle co-ordinaters
                    x=int(center_x - w/2)
                    y=int(center_y - h/2)
                    boxes.append([x,y,w,h]) #put all rectangle areas
                    confidences.append(float(confidence)) #how confidence was that object detected and show that percentage
                    class_ids.append(class_id) #name of the object tha was detected
        indexes = cv2.dnn.NMSBoxes(boxes,confidences,0.4,0.6)
        font = cv2.FONT_HERSHEY_PLAIN
        for i in range(len(boxes)):
            if i in indexes:
                x,y,w,h = boxes[i]
                label = str(classes[class_ids[i]])
                color = colors[i]
                cv2.rectangle(img,(x,y),(x+w,y+h),color,2)
                cv2.putText(img,label,(x,y+30),font,1,(255,255,255),2)
        #print('Frame took {} seconds'.format(time.time()-last_time))
        last_time = time.time()
        cv2.imshow('window', img)
        if cv2.waitKey(25) & 0xFF == ord('q'):
            cv2.destroyAllWindows()
            break

and finally we download the following files

  1. yolo.cfg (Download from here) — Configuration file
  2. yolo.weights (Download from here) — pre-trained weights
  3. coco.names (Download from here)- 80 classes names

then you add the following code

net = cv2.dnn.readNetFromDarknet('yolov3.cfg', 'yolov3.weights')
classes = []
with open("coco.names","r") as f:
    classes = [line.strip() for line in f.readlines()]
    
layer_names = net.getLayerNames()
outputlayers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors= np.random.uniform(0,255,size=(len(classes),3))

and finally you just run it with the simple code

main()

you can stop with simple press q

for example you want to identiy a Youtube video, of one beautiful girl

or this video https://youtu.be/QW-qWS3StZg?t=170

or the classic traffic recognition https://youtu.be/7HaJArMDKgI

Owner
Ruslan Magana Vsevolodovna
I am Data Scientist and Data Engineer. I have a Ph.D. in Physics and I am AWS certified in Machine Learning and Data Analytics
Ruslan Magana Vsevolodovna
FOTS Pytorch Implementation

News!!! Recognition branch now is added into model. The whole project has beed optimized and refactored. ICDAR Dataset SynthText 800K Dataset detectio

Ning Lu 599 Dec 19, 2022
Handwritten Character Recognition using CNN

Handwritten Character Recognition using CNN Problem Definition The main objective of this project is to solve the problem of handwritten character rec

Mohit Kaushik 4 Mar 02, 2022
Tesseract Open Source OCR Engine (main repository)

Tesseract OCR About This package contains an OCR engine - libtesseract and a command line program - tesseract. Tesseract 4 adds a new neural net (LSTM

48.4k Jan 09, 2023
Repository for Scene Text Detection with Supervised Pyramid Context Network with tensorflow.

Scene-Text-Detection-with-SPCNET Unofficial repository for [Scene Text Detection with Supervised Pyramid Context Network][https://arxiv.org/abs/1811.0

121 Oct 15, 2021
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval (arXiv) Repository to contain the code, models, data for end-to-end

225 Dec 25, 2022
Automatically fishes for you while you are afk :)

Dank-memer-afk-script A simple and quick way to make easy money in Dank Memer! How to use Open a discord channel which has the Dank Memer bot enabled.

Pranav Doshi 9 Nov 11, 2022
Text layer for bio-image annotation.

napari-text-layer Napari text layer for bio-image annotation. Installation You can install using pip: pip install napari-text-layer Keybindings and m

6 Sep 29, 2022
Text language identification using Wikipedia data

Text language identification using Wikipedia data The aim of this project is to provide high-quality language detection over all the web's languages.

Vsevolod Dyomkin 28 Jul 09, 2022
[ICCV, 2021] Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks

Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks This is an official PyTorch code repository of the paper "Cloud Transformers:

Visual Understanding Lab @ Samsung AI Center Moscow 27 Dec 15, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector

CRAFT: Character-Region Awareness For Text detection Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |

188 Dec 28, 2022
Neural search engine for AI papers

Papers search Neural search engine for ML papers. Demo Usage is simple: input an abstract, get the matching papers. The following demo also showcases

Giancarlo Fissore 44 Dec 24, 2022
An organized collection of tutorials and projects created for aspriring computer vision students.

A repository created with the purpose of teaching students in BME lab 308A- Hanoi University of Science and Technology

Givralnguyen 5 Nov 24, 2021
With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want.

Virtual Keyboard With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want. At

Güldeniz Bektaş 5 Jan 23, 2022
Detecting Text in Natural Image with Connectionist Text Proposal Network (ECCV'16)

Detecting Text in Natural Image with Connectionist Text Proposal Network The codes are used for implementing CTPN for scene text detection, described

Tian Zhi 1.3k Dec 22, 2022
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
Volume Control using OpenCV

Gesture-Volume-Control Volume Control using OpenCV Here i made volume control using Python and OpenCV in which we can control the volume of our laptop

Mudit Sinha 3 Oct 10, 2021
CTPN + DenseNet + CTC based end-to-end Chinese OCR implemented using tensorflow and keras

简介 基于Tensorflow和Keras实现端到端的不定长中文字符检测和识别 文本检测:CTPN 文本识别:DenseNet + CTC 环境部署 sh setup.sh 注:CPU环境执行前需注释掉for gpu部分,并解开for cpu部分的注释 Demo 将测试图片放入test_images

Yang Chenguang 2.6k Dec 29, 2022
A simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dropbox account at every 5 seconds

Security Camera using Opencv & Dropbox This is a simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dro

Arpit Rath 1 Jan 31, 2022
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.

Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l

Baoguang Shi 2k Dec 31, 2022