Align and Prompt: Video-and-Language Pre-training with Entity Prompts

Overview

ALPRO

Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper]

Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H. Hoi

Official PyTorch code for ALPRO. This repository supports pre-training as well as finetuning on

  • Text-Video Retrieval on MSRVTT and DiDeMo.
  • Video Question Anwsering on MSRVTT and MSVD.

Requirements

Our implementation is tested on Ubuntu 20.04.1 with NVIDIA A100 GPUs. Supports for other platforms and hardwares are possible with no warrant. To install the required packages:

cd env && bash install_pkg.sh

Data Preparation

  1. Download Annotations and Pre-trained Checkpoints

  2. Download raw videos of downstream datasets.

    • MSRVTT:
      • download train_val_videos.zip and test_videos.zip from e.g. here.

      • check md5sum:

        51f2394d279cf84f1642defd9a651e6f  train_val_videos.zip
        0af68454cec9d586e92805739f3911d0  test_videos.zip
      • unzip all the videos into data/msrvtt_ret/videos (10k in total).

      • create the following soft link:

        ln -s data/msrvtt_ret/videos data/msrvtt_qa/videos```
    • MSVD:
      • download from official release:

        wget -nc https://www.cs.utexas.edu/users/ml/clamp/videoDescription/YouTubeClips.tar
      • check md5sum:

        9bdb20fcf14d59524a6febca9f6a8d89  YouTubeClips.tar
      • unzip all the videos to data/msvd_qa/videos (1,970 videos in total).

        mkdir data/msvd_qa/videos/ 
        tar xvf YouTubeClips.tar -C data/msvd_qa/videos --strip-components=1
    • DiDeMo:
      • Following instructions and download from the official release here;
      • unzip all the videos into data/didemo_ret/videos.
      • Note there might be a couple videos missing. See here to download. However, as they account for a small portion of training set, you may feel safe to ignore.
      • Convert all the DiDeMo videos into *.mp4 format using e.g. ffmpeg.
      • We obtained 10,463 videos following these steps (with one video [email protected]_5753455690_1e04ccb364 missing).
  3. The directory is expected to be in the structure below:

    .
    |-config_release  # configuration files
    |-data  # text annotations and raw videos
    |---didemo_ret
    |-----txt
    |-----videos
    |---msrvtt_qa/...
    |---msrvtt_ret/...
    |---msvd_qa/...
    |-env  # scripts to install packages
    |-ext  # external resources, e.g. bert tokenizer
    |-output  # checkpoints for pre-trained/finetuned models
    |---downstreams
    |-----didemo_ret
    |-------public
    |---------ckpt # official finetuned checkpoints
    |---------log # inference log
    |---------results_test
    |-----------step_best_1_mean
    |-----msrvtt_qa/...
    |-----msrvtt_ret/...
    |-----msvd_qa/...
    |-run_scripts  # bash scripts to launch experiments
    |-src  # source code

Inference with Official Checkpoints

cd run_scripts
bash inf_msrvtt_ret.sh
# {'text2video': {'r1': 33.9, 'r5': 60.7, 'r10': 73.2, 'medianR': 3.0, 'meanR': 27.404}}
bash inf_didemo_ret.sh
# {'text2video': {'r1': 35.9, 'r5': 67.5, 'r10': 78.8, 'medianR': 3.0, 'meanR': 19.125}}
bash inf_msrvtt_qa.sh
# {'ratios': {'what_ratio': [68.48, 49872], 'who_ratio': [27.99, 20385], 'how_ratio': [2.25, 1640], 'where_ratio': [0.34, 250], 'when_ratio': [0.93, 677]}, 'overall_acc': 42.12, 'what_acc': 36.05, 'who_acc': 52.24, 'how_acc': 85.67, 'where_acc': 42.8, 'when_acc': 78.88}
bash inf_msvd_qa.sh
# {'ratios': {'what_ratio': [61.93, 8150], 'who_ratio': [34.6, 4554], 'how_ratio': [2.81, 370], 'where_ratio': [0.21, 28], 'when_ratio': [0.44, 58]}, 'overall_acc': 45.91, 'what_acc': 37.02, 'who_acc': 58.59, 'how_acc': 81.62, 'where_acc': 46.43, 'when_acc': 72.41}

Downstream Task Finetuning

  • To finetune on downstream tasks with the pre-trained checkpoint output/pretrain/alpro_pretrained_ckpt.pt

    cd run_scripts
    bash ft_msrvtt_ret.sh
    bash ft_didemo_ret.sh
    bash ft_msrvtt_qa.sh
    bash ft_msvd_qa.sh

    For example, with MSRVTT retrieval:

    cd ALPRO/
    
    export PYTHONPATH="$PYTHONPATH:$PWD"
    echo $PYTHONPATH
    
    CONFIG_PATH='config_release/msrvtt_ret.json'
    
    horovodrun -np 8 python src/tasks/run_video_retrieval.py \ # change -np to GPUs numbers.
        --config $CONFIG_PATH \
        --output_dir /export/home/workspace/experiments/alpro/finetune/msrvtt_ret/$(date '+%Y%m%d%H%M%S')  # change to your local path to store finetuning ckpts and logs 
  • Run inference with locally-finetuned checkpoints.

     cd ALPRO/
    
     export PYTHONPATH="$PYTHONPATH:$PWD"
     echo $PYTHONPATH
    
     STEP='best'
    
     CONFIG_PATH='config_release/msrvtt_ret.json'
     OUTPUT_DIR='[INPUT_YOUR_OUTPUT_PATH_HERE]'
    
     TXT_DB='data/msrvtt_ret/txt/test.jsonl'
     IMG_DB='data/msrvtt_ret/videos'
    
     horovodrun -np 8 python src/tasks/run_video_retrieval.py \
         --do_inference 1 \
         --inference_split test \
         --inference_model_step $STEP \
         --inference_txt_db $TXT_DB \
         --inference_img_db $IMG_DB \
         --inference_batch_size 64 \
         --output_dir $OUTPUT_DIR \
         --config $CONFIG_PATH
    • OUTPUT_DIR is the path after the --output_dir option in the finetuning script.
    • $STEP is a string, which tells the script to use the checkpoint $OUTPUT_DIR/ckpt/model_step_$STEP.pt for inference.

Pretraining

  1. Download WebVid2M and CC-3M.

    • Put WebVid2M videos under data/webvid2m;
    • 💡 we downsample webvid2m videos to 10% of the original FPS to speed-up video loading;
    • change data/cc3m/txt/cc3m.json with local image paths.
  2. Training Prompter:

    cd run_scripts && bash pt_prompter.sh
  3. Training video-language model:

    cd run_scripts && bash pt_alpro.sh

    If you would like to use custom prompter weight, please change teacher_weights_path in config_release/pretrain_alpro.json

  4. To finetune with pre-trained checkpoints, please change e2e_weights_path in the finetuning config files, e.g. config_release/msrvtt_ret.json.

Citation

If you find ALPRO useful for your research, please consider citing:

  @inproceedings{li2021align,
    title={Align and Prompt: Video-and-Language Pre-training with Entity Prompts},
    author={Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H. Hoi},
    booktitle={arxiv},
    year={2021}
  }

Acknowledgement

We thank members at Salesforce Research for their helpful discussions.

The implementation of ALPRO relies on resources from ClipBERT, transformers, TimeSformer, The code is implemented using PyTorch, with multi-GPU support from Horovod and gradient-checkpoint. We thank the original authors for their open-sourcing and encourage ALPRO users to cite their works when applicable.

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
Fang Zhonghao 13 Nov 19, 2022
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022