Russian GPT3 models.

Overview

ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small and ruGPT2Large

This repository contains bunch of autoregressive transformer language models trained on a huge dataset of russian language.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Large) trained with 1024 sequence length.

We suggest using ruGPT2Large or ruGPT3XL because this models are well tested and achieve the best perplexity.

Usage examples are described in detail here.

Old version of code you can find here

Table of contents

Setup and usage

Models can be used for inference or finetuning with two ways: 🤗 HuggingFace interface or our code based on this implementation.

For both ways install transformers:

pip install transformers==3.5.0

HuggingFace interface

We support 🤗 HuggingFace interface only for ruGPT3Large, ruGPT3Medium, ruGPT3Small and ruGPT2Large models. For RuGPT3XL please use code in this repo because RuGPT3XL model was trained with sparse attention.

Here we can obtain examples of finetuning or generation.

Also this examples is adapted for google colab:

  • finetuning: finetuning
  • generation: generation

Basic usage:

from transformers import GPT2LMHeadModel, GPT2Tokenizer


model_name_or_path = "sberbank-ai/rugpt3large_based_on_gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path)
model = GPT2LMHeadModel.from_pretrained(model_name_or_path).cuda()
text = "Александр Сергеевич Пушкин родился в "
input_ids = tokenizer.encode(text, return_tensors="pt").cuda()
out = model.generate(input_ids.cuda())
generated_text = list(map(tokenizer.decode, out))[0]
print(generated_text)
# Output should be like this:
# Александр Сергеевич Пушкин родился в \n1799 году. Его отец был крепостным крестьянином, а мать – крепостной крестьянкой. Детство и юность Пушкина прошли в деревне Михайловское под Петербургом. В 1820-х годах семья переехала

For more information about 🤗 HuggingFace interface please follow this documentation.

Data issues

For training pass single txt file.

Megatron interface

Without deepspeed

For using our code for finetuning without deepspeed (not recommended) we should install apex:

%%writefile setup.sh

export CUDA_HOME=/usr/local/cuda-10.1
git clone https://github.com/NVIDIA/apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./apex

sh setup.sh

Example of finetuning, generating and loading/convert megatron checkpoints here or Open In Colab

Note! This way is valid for all RuGPTs models except RuGPT3XL.

Megatron with deepspeed

For using our code for finetuning with deepspeed (recommended) we should install apex (see previous section) and deepspeed:

pip install deepspeed==0.3.7

Example of finetuning, generating and loading/convert megatron checkpoints here or Open In Colab

Note! For using deepspeed we should specify environ variable before all your python scripts and run with torch.distributed or mpi:

USE_DEEPSPEED=1 python -m torch.distributed.launch --nproc_per_node 1 ru-gpts/pretrain_gpt3.py \
  --train-data-path "train.list" \
  --test-data-path "valid.list" \
  --max-files-per-process 100 \
  --save model \
  --load-huggingface sberbank-ai/rugpt3small_based_on_gpt2 \
  --model-parallel-size 1 \
  --num-layers 12 \
  --hidden-size 768 \
  --num-attention-heads 12 \
  --seq-length 2048 \
  --max-position-embeddings 2048 \
  --fp16 \
  --checkpoint-activations \
  --deepspeed-activation-checkpointing \
  --deepspeed \
  --deepspeed_config ru-gpts/src/deepspeed_config/gpt3_small_2048.json
Data issues

We use custom implementation of distributed dataset. For training and evaluating we should specify file file.list with list of paths to txt files. All files from file.list will be splitted between aviable GPUs. The logic of splitting is described by the following code:

shard_size = len(files) // world_size
shard_start = rank * shard_size
shard_end = (rank + 1) * shard_size
files = files[shard_start:shard_end]

For more details please see full code of dataset: src.dataset_rugpt3.RuGpt3TextDataset and example.

Note! This way is valid for all RuGPTs models except RuGPT3XL.

Megatron with deepspeed and sparsity

This section is used mostly for usage of RuGPT3XL model and training models with sparse attention.

apt-get install llvm-9-dev
pip install cpufeature
pip install triton==0.2.3
DS_BUILD_CPU_ADAM=1 DS_BUILD_SPARSE_ATTN=1 pip install deepspeed==0.3.7

Test installation of deepspeed you can with the following command: ds_report.

Example of inference of RuGPT3XL here or Open In Colab

Example of finetune, load finetuned model and generate is here.

For using sparse layers in model use --sparse-mode and specify key "sparse_attention" at deepspeed_config (RuGPT3XL config example). Modes can be: fixed, bigbird, bslongformer, variable, dense.

More information about sparse attention here.

Pretraining details

All pretraining was done on Nvidia Tesla V100-SXM3 32 Gb GPUs on a Christofari Cluster. Following are the details of pretraining for each model.

Pretraining ruGPT3XL

Model was trained with 512 sequence length using Deepspeed and Megatron code by SberDevices team, on 80B tokens dataset for 4 epochs. After that model was finetuned 1 epoch with sequence length 2048.
Note! Model has sparse attention blocks.

Total training time was around 10 days on 256 GPUs.
Final perplexity on test set is 12.05.

🤗 HuggingFace model card link.

See more details for generation here or Open In Colab.

Example of finetune, load finetuned model and generate is here.

Our pretraining script here

Example of finetuning script here

Pretraining ruGPT3Large

Model was trained with sequence length 1024 using transformers lib by SberDevices team on 80B tokens for 3 epochs. After that model was finetuned 1 epoch with sequence length 2048.

Total training time was around 14 days on 128 GPUs for 1024 context and few days on 16 GPUs for 2048 context.
Final perplexity on test set is 13.6.

You can obtain this model by using transformers with model name sberbank-ai/rugpt3large_based_on_gpt2.

🤗 HuggingFace model card link

Our pretraining script here

Pretraining ruGPT3Medium

Model was trained with sequence length 1024 using transformers lib by SberDevices team on 80B tokens for 3 epoch. After that model was finetuned on 2048 context.

Total training time was around 16 days on 64 GPUs.
Final perplexity on test set is 17.4.

You can obtain this model by using transformers with model name sberbank-ai/rugpt3medium_based_on_gpt2.

🤗 HuggingFace model card link

Our pretraining script here

Pretraining ruGPT3Small

Model was trained with sequence length 1024 using transformers by SberDevices team on 80B tokens around 3 epoch. After that model was finetuned on 2048 context.

Total training time took around one week on 32 GPUs.

You can obtain this model by using transformers with model name sberbank-ai/rugpt3small_based_on_gpt2.

🤗 HuggingFace model card link

Our pretraining script here

Pretraining ruGPT2Large

Model was trained with sequence length 1024 using transformers by SberDevices team on 170Gb data on 64 GPUs 3 weeks.

You can obtain this model by using transformers with model name sberbank-ai/rugpt2large.

🤗 HuggingFace model card link

Advanced

Pretrained scripts (advanced)

Also we add pretraining scripts for all models (except RuGPT2Large). See scripts dir.

Note! All training params (such as lr, wd, ...) may was different while real training. This is just for example.

Convert checkpoint to HuggingFace

For converting megatron checkpoint to HuggingFace format use the following script (example for RuGPT3Small):

python convert2huggingface.py \
  --load /path/to/save/dir/ \
  --model-parallel-size 1 \
  --num-layers 12 \
  --hidden-size 768 \
  --num-attention-heads 12 \
  --max-position-embeddings 2048 \
  --tokenizer-path sberbank-ai/rugpt3small_based_on_gpt2 \
  --no-load-optim \
  --export-huggingface /path/to/converted/checkpoint

After converting we can use HuggingFace model:

from transformers import GPT2LMHeadModel
model = GPT2LMHeadModel.from_pretrained("/path/to/converted/checkpoint")

Note! Conversion is worked for all models except RuGPT3XL. For using of RuGPT3XL see example of inference of RuGPT3XL here or Open In Colab.

Owner
Sberbank AI
Sberbank AI
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
This project consists of data analysis and data visualization (done using python)of all IPL seasons from 2008 to 2019 and answering the most asked questions about the IPL.

IPL-data-analysis This project consists of data analysis and data visualization of all IPL seasons from 2008 to 2019 and answering the most asked ques

Sivateja A T 2 Feb 08, 2022
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
Retraining OpenAI's GPT-2 on Discord Chats

Train OpenAI's GPT-2 on Discord Chats Retraining a Text Generation Model on Discord Chats using gpt-2-simple that wraps existing model fine-tuning and

Ayush Mishra 4 Oct 27, 2022
Awesome-NLP-Research (ANLP)

Awesome-NLP-Research (ANLP)

Language, Information, and Learning at Yale 72 Dec 19, 2022
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

45 Oct 29, 2022
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
A simple version of DeTR

DeTR-Lite A simple version of DeTR Before you enjoy this DeTR-Lite The purpose of this project is to allow you to learn the basic knowledge of DeTR. P

Jianhua Yang 11 Jun 13, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
Edge-Augmented Graph Transformer

Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:

Md Shamim Hussain 21 Dec 14, 2022