This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

Overview

OpenSurfaces Segmentation UI

This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool. A dummy server backend is included to run the demo.

You can also view the demo online.

To run the demo, there are two versions: one with django, and one with no framework. The django version uses a dummy django server and compiles the website live as necessary. The non-django version is a flat html file extracted from the django version.

If you find this tool helpful, please cite our project:

@inproceedings{bell13opensurfaces,
	author = "Sean Bell and Paul Upchurch and Noah Snavely and Kavita Bala",
	title = "OpenSurfaces: A Richly Annotated Catalog of Surface Appearance",
	booktitle = "SIGGRAPH Conf. Proc.",
	volume = "32",
	number = "4",
	year = "2013",
}

and report any bugs using the GitHub issue tracker. Also, please "star" this project on GitHub; it's nice to see how many people are using our code.

Version 1: Run with Django (Ubuntu Linux)

  1. Install dependencies (coffee-script, django, django-compressor, ua-parser, BeautifulSoup):

    Note: this will change your django current installation if you are not somewhere between 1.4.* and 1.6.*. I suggest looking into the virtualenv package if this is a problem for you.

./django-setup-demo.sh
  1. Start the local webserver:
./django-run-demo.sh
  1. Visit localhost:8000 in a web browser

To get the demo to work on Mac and Windows, you will have to look at the above scripts and run the equivalent commands for your system.

After drawing 6 polygons, the submit button will show you the POST data that would have been sent to the server.

Version 2: Run without Django (Linux or Mac)

  1. Install npm and node.js. On Ubuntu, this is:
sudo apt-get install npm nodejs
  1. Install coffee-script:
sudo npm install -g coffee-script
  1. Build static files (js, css, img) and then start a local python-based webserver:
./python-run-demo.sh
  1. Visit localhost:8000 in a web browser

To get the demo to work on Windows, you will have to look at the above scripts and run the equivalent commands for your system.

Project Notes

POST data

When a user submits, the client will POST the data to the same URL. On success, the client expects the JSON response {"message": "success", "result": "success"}. The client will then notify the MTurk server that the task is completed. For more details, see example_project/segmentation/views.py.

When a user submits, the POST will contain these fields:

results: a dictionary mapping from the photo ID (which is just "1" in
	this example) to a list of polygons.  Example:
	{"1": [[x1,y1,x2,y2,x3,y3,...], [x1,y1,x2,y2,...]]}.
	Coordinates are scaled with respect to the source photo dimensions, so both
	x and y are in the range 0 to 1.

time_ms: amount of time the user spent (whether or not they were active)

time_active_ms: amount of time that the user was active in the current window

action_log: a JSON-encoded log of user actions

screen_width: user screen width

screen_height: user screen height

version: always "1.0"

feedback: omitted if there is no feedback; JSON encoded dictionary of the form:
{
	'thoughts': user's response to "What did you think of this task?",
	'understand': user's response to "What parts didn't you understand?",
	'other': user's response to "Any other feedback, improvements, or suggestions?"
}

Feedback survey

When the user finishes the task, a popup will ask for feedback. In the django version, disable this by setting ask_for_feedback to 'false' in the file example_project/segmentation/vies.py. In the non-django verfsion, update the window.ask_for_feedback variable in index.html.

I recommend asking for feedback after the 2nd or 3rd time a user has submitted, not the first time, and then not asking again (otherwise it gets annoying). Users usually don't have feedback until they have been working for a little while.

Compiling from coffeescript

The javascript for the tool is automatically compiled from coffeescript files by django-compressor and accessed by the client at a url of the form /static/cache/js/*.js. This is set up already if using django.

If not using django, the python-run-demo.sh does this for you by manually compiling coffeescript files and storing them in the /static/ folder.

Browser compatibility

This UI works in Chrome and Firefox only. The Django version includes a browser check that shows an error page if the user is not on Chrome or Firefox or is on a mobile device.

Local /static/ folder

After you run the demo setup, the directory /static/ will contain compiled css and javascript files.

If you are usikng django and change any part of the static files (js, css, images, coffeescript), you will need to repopulate the static folder with this command:

example_project/manage.py collectstatic --noinput

If you are building on top of this repository:

In example_project/settings.py:

  1. Change SECRET_KEY to some random string.
  2. Fill in the rest of the values (admin name, database, etc).

If you want to add this demo to your own (separate) Django project:

In your settings.py file, make the following changes:

  1. Make sure STATIC_ROOT is set to an absolute writable path.

  2. Add this to the STATICFILES_FINDERS tuple:

	'compressor.finders.CompressorFinder',
  1. Add this to the INSTALLED_APPS tuple:
	'django.contrib.humanize',
	'compressor',
	'segmentation',
  1. Add this to settings.py (e.g. at the end):
	# Django Compressor
	COMPRESS_ENABLED = True
	COMPRESS_OUTPUT_DIR = 'cache'
	COMPRESS_PRECOMPILERS = (
		('text/coffeescript', 'coffee --bare --compile --stdio'),
		('text/less', 'lessc -x {infile} {outfile}'),
	)
Owner
Sean Bell
CEO and Co-Founder, GrokStyle Inc. PhD, Cornell University
Sean Bell
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022