LaneAF: Robust Multi-Lane Detection with Affinity Fields

Related tags

Deep LearningLaneAF
Overview

PWC

PWC

LaneAF: Robust Multi-Lane Detection with Affinity Fields

This repository contains Pytorch code for training and testing LaneAF lane detection models introduced in this paper.

Installation

  1. Clone this repository
  2. Install Anaconda
  3. Create a virtual environment and install all dependencies:
conda create -n laneaf pip python=3.6
source activate laneaf
pip install numpy scipy matplotlib pillow scikit-learn
pip install opencv-python
pip install https://download.pytorch.org/whl/cu101/torch-1.7.0%2Bcu101-cp36-cp36m-linux_x86_64.whl
pip install https://download.pytorch.org/whl/cu101/torchvision-0.8.1%2Bcu101-cp36-cp36m-linux_x86_64.whl
source deactivate

You can alternately find your desired torch/torchvision wheel from here.

  1. Clone and make DCNv2:
cd models/dla
git clone https://github.com/lbin/DCNv2.git
cd DCNv2
./make.sh

TuSimple

The entire TuSimple dataset should be downloaded and organized as follows:

└── TuSimple/
    ├── clips/
    |   └── .
    |   └── .
    ├── label_data_0313.json
    ├── label_data_0531.json
    ├── label_data_0601.json
    ├── test_tasks_0627.json
    ├── test_baseline.json
    └── test_label.json

The model requires ground truth segmentation labels during training. You can generate these for the entire dataset as follows:

source activate laneaf # activate virtual environment
python datasets/tusimple.py --dataset-dir=/path/to/TuSimple/
source deactivate # exit virtual environment

Training

LaneAF models can be trained on the TuSimple dataset as follows:

source activate laneaf # activate virtual environment
python train_tusimple.py --dataset-dir=/path/to/TuSimple/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/tusimple folder by default.

Inference

Trained LaneAF models can be run on the TuSimple test set as follows:

source activate laneaf # activate virtual environment
python infer_tusimple.py --dataset-dir=/path/to/TuSimple/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the TuSimple format and also produce benchmark metrics using their official implementation.

CULane

The entire CULane dataset should be downloaded and organized as follows:

└── CULane/
    ├── driver_*_*frame/
    ├── laneseg_label_w16/
    ├── laneseg_label_w16_test/
    └── list/

Training

LaneAF models can be trained on the CULane dataset as follows:

source activate laneaf # activate virtual environment
python train_culane.py --dataset-dir=/path/to/CULane/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/culane folder by default.

Inference

Trained LaneAF models can be run on the CULane test set as follows:

source activate laneaf # activate virtual environment
python infer_culane.py --dataset-dir=/path/to/CULane/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the CULane format. You can then use their official code to evaluate the model on the CULane benchmark.

Unsupervised Llamas

The Unsupervised Llamas dataset should be downloaded and organized as follows:

└── Llamas/
    ├── color_images/
    |   ├── train/
    |   ├── valid/
    |   └── test/
    └── labels/
        ├── train/
        └── valid/

Training

LaneAF models can be trained on the Llamas dataset as follows:

source activate laneaf # activate virtual environment
python train_llamas.py --dataset-dir=/path/to/Llamas/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/llamas folder by default.

Inference

Trained LaneAF models can be run on the Llamas test set as follows:

source activate laneaf # activate virtual environment
python infer_llamas.py --dataset-dir=/path/to/Llamas/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the CULane format and Llamas format for the Lane Approximations benchmark. Note that the results produced in the Llamas format could be inaccurate because we guess the IDs of the indivudal lanes.

Pre-trained Weights

You can download our pre-trained model weights using this link.

Citation

If you find our code and/or models useful in your research, please consider citing the following papers:

@article{abualsaud2021laneaf,
title={LaneAF: Robust Multi-Lane Detection with Affinity Fields},
author={Abualsaud, Hala and Liu, Sean and Lu, David and Situ, Kenny and Rangesh, Akshay and Trivedi, Mohan M},
journal={arXiv preprint arXiv:2103.12040},
year={2021}
}
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022