Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Overview

Semantic search through Wikipedia with the Weaviate vector search engine

Weaviate is an open source vector search engine with build-in vectorization and question answering modules. We imported the complete English language Wikipedia article dataset into a single Weaviate instance to conduct semantic search queries through the Wikipedia articles, besides this, we've made all the graph relations between the articles too. We have made the import scripts, pre-processed articles, and backup available so that you can run the complete setup yourself.

In this repository, you'll find the 3-steps needed to replicate the import, but there are also downlaods available to skip the first two steps.

If you like what you see, a on the Weaviate Github repo or joining our Slack is appreciated.

Additional links:

Frequently Asked Questions

Q A
Can I run this setup with a non-English dataset? Yes – first, you need to go through the whole process (i.e., start with Step 1). E.g., if you want French, you can download the French version of Wikipedia like this: https://dumps.wikimedia.org/frwiki/latest/frwiki-latest-pages-articles.xml.bz2 (note that en if replaced with fr). Next, you need to change the Weaviate vectorizer module to an appropriate language. You can choose an OOTB language model as outlined here or add your own model as outlined here.
Can I run this setup with all languages? Yes – you can follow two strategies. You can use a multilingual model or extend the Weaviate schema to store different languages with different classes. The latter has the upside that you can use multiple vectorizers (e.g., per language) or a more elaborate sharding strategy. But in the end, both are possible.
Can I run this with Kubernetes? Of course, you need to start from Step 2. But if you follow the Kubernetes set up in the docs you should be good :-)
Can I run this with my own data? Yes! This is just a demo dataset, you can use any data you have and like. Go to the Weaviate docs or join our Slack to get started.

Acknowledgments

Stats

description value
Articles imported 11.348.257
Paragaphs imported 27.377.159
Graph cross references 125.447.595
Wikipedia version truthy October 9th, 2021
Machine for inference 12 CPU – 100 GB RAM – 250Gb SSD – 1 x NVIDIA Tesla P4
Weaviate version v1.7.2
Dataset size 122GB

Example queries

Example semantic search queries in Weaviate's GraphQL interface

Import

There are 3-steps in the import process. You can also skip the first two and directly import the backup

Step 1: Process the Wikipedia dump

In this process, the Wikipedia dataset is processed and cleaned (the markup is removed, HTML tags are removed, etc). The output file is a JSON Lines document that will be used in the next step.

Process from the Wikimedia dump:

$ cd step-1
$ wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
$ bzip2 -d filename.bz2
$ pip3 install -r requirements.txt
$ python3 process.py

The import takes a few hours, so probably you want to do something like:

$ nohup python3 -u process.py &

You can also download the processed file from October 9th, 2021, and skip the above steps

$ wget https://storage.googleapis.com/semi-technologies-public-data/wikipedia-en-articles.json.gz
$ gunzip wikipedia-en-articles.json.gz

Step 2: Import the dataset and vectorized the content

Weaviate takes care of the complete import and vectorization process but you'll need some GPU and CPU muscle to achieve this. Important to bear in mind is that this is only needed on import time. If you don't want to spend the resources on doing the import, you can go to the next step in the process and download the Weaviate backup. The machine needed for inference is way cheaper.

We will be using a single Weaviate instance, but four Tesla T4 GPUs that we will stuff with 8 models each. To efficiently do this, we are going to add an NGINX load balancer between Weaviate and the vectorizers.

Weaviate Wikipedia import architecture with transformers and vectorizers

  • Every Weaviate text2vec-module will be using a multi-qa-MiniLM-L6-cos-v1 sentence transformer.
  • The volume is mounted outside the container to /var/weaviate. This allows us to use this folder as a backup that can be imported in the next step.
  • Make sure to have Docker-compose with GPU support installed.
  • The import scripts assumes that the JSON file is called wikipedia-en-articles.json.
$ cd step-2
$ docker-compose up -d
$ pip3 install -r requirements.txt
$ python3 import.py

The import takes a few hours, so probably you want to do something like:

$ nohup python3 -u import.py &

After the import is done, you can shut down the Docker containers by running docker-compose down.

You can now query the dataset!

Step 3: Load from backup

Start here if you want to work with a backup of the dataset without importing it

You can now run the dataset! We would advise running it with 1 GPU, but you can also run it on CPU only (without Q&A). The machine you need for inference is significantly smaller.

Note that Weaviate needs some time to import the backup (if you use the setup mentioned above +/- 15min). You can see the status of the backup in the docker logs of the Weaviate container.

# clone this repository
$ git clone https://github.com/semi-technologies/semantic-search-through-Wikipedia-with-Weaviate/
# go into the backup dir
$ cd step-3
# download the Weaviate backup
$ curl https://storage.googleapis.com/semi-technologies-public-data/weaviate-1.8.0-rc.2-backup-wikipedia-py-en-multi-qa-MiniLM-L6-cos.tar.gz -O
# untar the backup (112G unpacked)
$ tar -xvzf weaviate-1.8.0-rc.2-backup-wikipedia-py-en-multi-qa-MiniLM-L6-cos.tar.gz
# get the unpacked directory
$ echo $(pwd)/var/weaviate
# use the above result (e.g., /home/foobar/var/weaviate)
#   update volumes in docker-compose.yml (NOT PERSISTENCE_DATA_PATH!) to the above output
#   (e.g., 
#     volumes:
#       - /home/foobar/var/weaviate:/var/lib/weaviate
#   )    
#
#   With 12 CPUs this process takes about 12 to 15 minutes to complete.
#   The Weaviate instance will be available directly, but the cache is pre-filling in this timeframe

With GPU

$ cd step-3
$ docker-compose -f docker-compose-gpu.yml up -d

Without GPU

$ cd step-3
$ docker-compose -f docker-compose-no-gpu.yml up -d

Example queries

"Where is the States General of The Netherlands located?" try it live!

##
# Using the Q&A module I
##
{
  Get {
    Paragraph(
      ask: {
        question: "Where is the States General of The Netherlands located?"
        properties: ["content"]
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
          certainty
        }
      }
      content
      title
    }
  }
}

"What was the population of the Dutch city Utrecht in 2019?" try it live!

##
# Using the Q&A module II
##
{
  Get {
    Paragraph(
      ask: {
        question: "What was the population of the Dutch city Utrecht in 2019?"
        properties: ["content"]
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
          certainty
        }
      }
      content
      title
    }
  }
}

About the concept "Italian food" try it live!

##
# Generic question about Italian food
##
{
  Get {
    Paragraph(
      nearText: {
        concepts: ["Italian food"]
      }
      limit: 50
    ) {
      content
      order
      title
      inArticle {
        ... on Article {
          title
        }
      }
    }
  }
}

"What was Michael Brecker's first saxophone?" in the Wikipedia article about "Michael Brecker" try it live!

##
# Mixing scalar queries and semantic search queries
##
{
  Get {
    Paragraph(
      ask: {
        question: "What was Michael Brecker's first saxophone?"
        properties: ["content"]
      }
      where: {
        operator: Equal
        path: ["inArticle", "Article", "title"]
        valueString: "Michael Brecker"
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
        }
      }
      content
      order
      title
      inArticle {
        ... on Article {
          title
        }
      }
    }
  }
}

Get all Wikipedia graph connections for "jazz saxophone players" try it live!

##
# Mixing semantic search queries with graph connections
##
{
  Get {
    Paragraph(
      nearText: {
        concepts: ["jazz saxophone players"]
      }
      limit: 25
    ) {
      content
      order
      title
      inArticle {
        ... on Article { # <== Graph connection I
          title
          hasParagraphs { # <== Graph connection II
            ... on Paragraph {
              title
            }
          }
        }
      }
    }
  }
}
Owner
SeMI Technologies
SeMI Technologies creates database software like the Weaviate vector search engine
SeMI Technologies
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 829 Jan 07, 2023
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 06, 2023
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Transformers Wav2Vec2 + Parlance's CTCDecodeTransformers Wav2Vec2 + Parlance's CTCDecode

🤗 Transformers Wav2Vec2 + Parlance's CTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with Parlance's ctcdecode

Patrick von Platen 9 Jul 21, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
Pytorch version of BERT-whitening

BERT-whitening This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval". BERT-whitening is

Weijie Liu 255 Dec 27, 2022
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank

Main Idea The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank Semantic Search Re

Sergio Arnaud Gomez 2 Jan 28, 2022
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks,

TextFlint is a multilingual robustness evaluation platform for natural language processing tasks, which unifies general text transformation, task-specific transformation, adversarial attack, sub-popu

TextFlint 587 Dec 20, 2022
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Russian words synonyms and antonyms

ru_synonyms Russian words synonyms and antonyms. Install pip install git+https://github.com/ahmados/rusynonyms.git Usage from ru_synonyms import Anto

sumekenov 7 Dec 14, 2022