[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

Related tags

Deep LearningCxGrad
Overview

CxGrad - Official PyTorch Implementation

Contextual Gradient Scaling for Few-Shot Learning
Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song
In WACV 2022. (Paper link will be provided soon)

This repository is an official PyTorch implementation for "Contextual Gradient Scaling for Few-Shot Learning" in WACV 2022.

Installation

This code is based on PyTorch. Please make a virtual environment and use it by running the command below:

conda env create --file environment.yml -n CxGrad
conda activate CxGrad

Datasets

We provide instructions to download 4 datasets: miniImageNet, tieredImageNet, CUB, and CIFAR-FS. Download the datasets you want to use and move them to datasets.

  1. miniImageNet: Download mini_imagenet_full_size.tar.bz2 from this link, provided in MAML++. Note that by downloading and using the miniImageNet, you accept terms and conditions found in imagenet_license.md.

  2. tieredImageNet: Download tiered_imagenet.tar from this link.

  3. CIFAR-FS: Download cifar100.zip from this link. The splits and the download link are provided by Bertinetto.

  4. CUB: Download CUB_200_2011.tgz from this link. The classes of each split are randomly chosen. Thus, we provide the splits of our experiments: CUB_split_train.txt, CUB_split_val.txt, and CUB_split_test.txt in datasets/preprocess. These splits are done by a script written by Chen.

Then, run the command below to preprocess the datasets you downloaded.

python preprocess/preprocess.py --datasets DATASET1 DATASET2 ...

The structure should be like this:

CxGrad 
  ├── datasets
  |      ├── miniImageNet
  |      |        ├── train
  |      |        ├── val
  |      |        └── test
  |      |── tieredImageNet
  |      |         ├── train
  |      |         ├── val
  |      |         └── test
  |      ├── CIFAR-FS
  |      |       ├── train
  |      |       ├── val
  |      |       └── test
  |      └── CUB
  |           ├── train
  |           ├── val
  |           └── test
  ├── utils
  ├── README.md
  └── ...

Run experiments

  • Change directory to experiment_scripts.

Train

  • In order to train the model on N-way K-shot miniImageNet classification, run
    bash mini_imagenet_Nway_Kshot/CxGrad_4conv.sh GPU_ID
    
  • Otherwise for tieredImageNet, run
     bash tiered_imagenet_Nway_Kshot/CxGrad_4conv.sh GPU_ID
    

Test

  • ex) Test on CUB using the model trained on 5-way 5-shot miniImageNet
     TEST=1 TEST_DATASET=CUB bash mini_imagenet_5way_5shot/CxGrad_4conv.sh GPU_ID
    

Citation

To be prepared

Acknowledgment

Thanks to the authors of MAML++ and ALFA, which our work is based on, for their great implementations.

Owner
Sanghyuk Lee
Sanghyuk Lee
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022