[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

Related tags

Deep LearningCxGrad
Overview

CxGrad - Official PyTorch Implementation

Contextual Gradient Scaling for Few-Shot Learning
Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song
In WACV 2022. (Paper link will be provided soon)

This repository is an official PyTorch implementation for "Contextual Gradient Scaling for Few-Shot Learning" in WACV 2022.

Installation

This code is based on PyTorch. Please make a virtual environment and use it by running the command below:

conda env create --file environment.yml -n CxGrad
conda activate CxGrad

Datasets

We provide instructions to download 4 datasets: miniImageNet, tieredImageNet, CUB, and CIFAR-FS. Download the datasets you want to use and move them to datasets.

  1. miniImageNet: Download mini_imagenet_full_size.tar.bz2 from this link, provided in MAML++. Note that by downloading and using the miniImageNet, you accept terms and conditions found in imagenet_license.md.

  2. tieredImageNet: Download tiered_imagenet.tar from this link.

  3. CIFAR-FS: Download cifar100.zip from this link. The splits and the download link are provided by Bertinetto.

  4. CUB: Download CUB_200_2011.tgz from this link. The classes of each split are randomly chosen. Thus, we provide the splits of our experiments: CUB_split_train.txt, CUB_split_val.txt, and CUB_split_test.txt in datasets/preprocess. These splits are done by a script written by Chen.

Then, run the command below to preprocess the datasets you downloaded.

python preprocess/preprocess.py --datasets DATASET1 DATASET2 ...

The structure should be like this:

CxGrad 
  ├── datasets
  |      ├── miniImageNet
  |      |        ├── train
  |      |        ├── val
  |      |        └── test
  |      |── tieredImageNet
  |      |         ├── train
  |      |         ├── val
  |      |         └── test
  |      ├── CIFAR-FS
  |      |       ├── train
  |      |       ├── val
  |      |       └── test
  |      └── CUB
  |           ├── train
  |           ├── val
  |           └── test
  ├── utils
  ├── README.md
  └── ...

Run experiments

  • Change directory to experiment_scripts.

Train

  • In order to train the model on N-way K-shot miniImageNet classification, run
    bash mini_imagenet_Nway_Kshot/CxGrad_4conv.sh GPU_ID
    
  • Otherwise for tieredImageNet, run
     bash tiered_imagenet_Nway_Kshot/CxGrad_4conv.sh GPU_ID
    

Test

  • ex) Test on CUB using the model trained on 5-way 5-shot miniImageNet
     TEST=1 TEST_DATASET=CUB bash mini_imagenet_5way_5shot/CxGrad_4conv.sh GPU_ID
    

Citation

To be prepared

Acknowledgment

Thanks to the authors of MAML++ and ALFA, which our work is based on, for their great implementations.

Owner
Sanghyuk Lee
Sanghyuk Lee
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022