Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

Overview

fast-Bart

Reduction of BART model size by 3X, and boost in inference speed up to 3X

BART implementation of the fastT5 library (https://github.com/Ki6an/fastT5)

Pytorch model -> ONNX model -> Quantized ONNX model


Install

Install using requirements.txt file

git clone https://github.com/siddharth-sharma7/fast-Bart
cd fast-Bart
pip install -r requirements.txt

Usage

The export_and_get_onnx_model() method exports the given pretrained Bart model to onnx, quantizes it and runs it on the onnxruntime with default settings. The returned model from this method supports the generate() method of huggingface.

If you don't wish to quantize the model then use quantized=False in the method.

from fastBart import export_and_get_onnx_model
from transformers import AutoTokenizer

model_name = 'facebook/bart-base'
model = export_and_get_onnx_model(model_name)

tokenizer = AutoTokenizer.from_pretrained(model_name)
input = "This is a very long sentence and needs to be summarized."
token = tokenizer(input, return_tensors='pt')

tokens = model.generate(input_ids=token['input_ids'],
               attention_mask=token['attention_mask'],
               num_beams=3)

output = tokenizer.decode(tokens.squeeze(), skip_special_tokens=True)
print(output)

to run the already exported model use get_onnx_model()

you can customize the whole pipeline as shown in the below code example:

from fastBart import (OnnxBart, get_onnx_runtime_sessions,
                    generate_onnx_representation, quantize)
from transformers import AutoTokenizer

model_or_model_path = 'facebook/bart-base'

# Step 1. convert huggingfaces bart model to onnx
onnx_model_paths = generate_onnx_representation(model_or_model_path)

# Step 2. (recommended) quantize the converted model for fast inference and to reduce model size.
# The process is slow for the decoder and init-decoder onnx files (can take up to 15 mins)
quant_model_paths = quantize(onnx_model_paths)

# step 3. setup onnx runtime
model_sessions = get_onnx_runtime_sessions(quant_model_paths)

# step 4. get the onnx model
model = OnnxBart(model_or_model_path, model_sessions)

                      ...
custom output paths

By default, fastBart creates a models-bart folder in the current directory and stores all the models. You can provide a custom path for a folder to store the exported models. And to run already exported models that are stored in a custom folder path: use get_onnx_model(onnx_models_path="/path/to/custom/folder/")

from fastBart import export_and_get_onnx_model, get_onnx_model

model_name = "facebook/bart-base"
custom_output_path = "/path/to/custom/folder/"

# 1. stores models to custom_output_path
model = export_and_get_onnx_model(model_name, custom_output_path)

# 2. run already exported models that are stored in custom path
# model = get_onnx_model(model_name, custom_output_path)

Functionalities

  • Export any pretrained Bart model to ONNX easily.
  • The exported model supports beam search and greedy search and more via generate() method.
  • Reduce the model size by 3X using quantization.
  • Up to 3X speedup compared to PyTorch execution for greedy search and 2-3X for beam search.
Owner
Siddharth Sharma
Machine learning | NLP | Computer Vision
Siddharth Sharma
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023