Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Overview

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text for natural language processing (NLP) research.

Note: The scripts have been created for and tested with the Japanese version of Wikipedia only.

Preprocessed files

Some of the preprocessed files generated by this repo's scripts can be downloaded from the Releases page.

All the preprocessed files are distributed under the CC-BY-SA 3.0 and GFDL licenses. For more information, see the License section below.

Example usage of the scripts

Get Wikipedia page ids from a Cirrussearch dump file

get_all_page_ids_from_cirrussearch.py

This script extracts the page ids and revision ids of all pages from a Wikipedia Cirrussearch dump file (available from this site.) It also adds the following information to each item based on the information in the dump file:

  • "num_inlinks": the number of incoming links to the page.
  • "is_disambiguation_page": whether the page is a disambiguation page.
  • "is_sexual_page": whether the page is labeled containing sexual contents.
  • "is_violent_page": whether the page is labeled containing violent contents.
$ python get_all_page_ids_from_cirrussearch.py \
--cirrus_file ~/data/wikipedia/cirrussearch/20211129/jawiki-20211129-cirrussearch-content.json.gz \
--output_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json

# If you want the output file sorted by the page id:
$ cat ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json|jq -s -c 'sort_by(.pageid)[]' > ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129-sorted.json
$ mv ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129-sorted.json ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json

The script outputs a JSON Lines file containing following items, one item per line:

{
    "title": "アンパサンド",
    "pageid": 5,
    "revid": 85364431,
    "num_inlinks": 231,
    "is_disambiguation_page": false,
    "is_sexual_page": false,
    "is_violent_page": false
}

Get Wikipedia page HTMLs

get_page_htmls.py

This script fetches HTML contents of the Wikipedia pages specified by the page ids in the input file. It makes use of Wikimedia REST API to accsess the contents of Wikipedia pages.

Important: Be sure to check the terms and conditions of the API documented in the official page. Especially, you may not send more than 200 requests/sec to the API. You should also set your contact information (e.g., email address) in the User-Agent header so that Wikimedia can contact you quickly if necessary.

# It takes about 2 days to fetch all the articles in Japanese Wikipedia
$ python get_page_htmls.py \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--output_file ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz \
--language ja \
--user_agent <your_contact_information> \
--batch_size 20 \
--mobile

# If you want the output file sorted by the page id:
$ zcat ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz|jq -s -c 'sort_by(.pageid)[]'|gzip > ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129-sorted.json.gz
$ mv ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129-sorted.json.gz ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz

# Splitting the file for distribution
$ gunzip ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz
$ split -n l/5 --numeric-suffixes=1 --additional-suffix=.json ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.
$ gzip ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.*.json
$ gzip ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json

The script outputs a gzipped JSON Lines file containing following items, one item per line:

{
  "title": "アンパサンド",
  "pageid": 5,
  "revid": 85364431,
  "url": "https://ja.wikipedia.org/api/rest_v1/page/mobile-html/%E3%82%A2%E3%83%B3%E3%83%91%E3%82%B5%E3%83%B3%E3%83%89/85364431",
  "html": "
}

Extract paragraphs from the Wikipedia page HTMLs

extract_paragraphs_from_page_htmls.py

This script extracts paragraph texts from a Wikipedia page HTMLs file generated by get_page_htmls.py. You can specify the minimum and maximum length of the paragraph texts to be extracted.

# This produces 8,921,367 paragraphs
$ python extract_paragraphs_from_page_htmls.py \
--page_htmls_file ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--min_paragraph_length 10 \
--max_paragraph_length 1000

Make a plain text corpus of Wikipedia paragraph/page texts

make_corpus_from_paragraphs.py

This script produces a plain text corpus file from a paragraphs file generated by extract_paragraphs_from_page_htmls.py. You can optionally filter out disambiguation/sexual/violent pages from the output file by specifying the corresponding command line options.

Here we use mecab-ipadic-NEologd in splitting texts into sentences so that some sort of named entities will not be split into sentences.

The output file is a gzipped text file containing one sentence per line, with the pages separated by blank lines.

# 22,651,544 lines from all pages
$ python make_corpus_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/corpus-jawiki-20211129.txt.gz \
--mecab_option '-d /usr/local/lib/mecab/dic/ipadic-neologd-v0.0.7' \
--min_sentence_length 10 \
--max_sentence_length 1000

# 18,721,087 lines from filtered pages
$ python make_corpus_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/corpus-jawiki-20211129-filtered-large.txt.gz \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--mecab_option '-d /usr/local/lib/mecab/dic/ipadic-neologd-v0.0.7' \
--min_sentence_length 10 \
--max_sentence_length 1000 \
--min_inlinks 10 \
--exclude_sexual_pages

make_corpus_from_cirrussearch.py

This script produces a plain text corpus file by simply taking the text attributes of pages from a Wikipedia Cirrussearch dump file.

The resulting corpus file will be somewhat different from the one generated by make_corpus_from_paragraphs.py due to some differences in text processing. In addition, since the text attributes in the Cirrussearch dump file does not retain the page structure, it is less flexible to modify the processing of text compared to processing an HTML file with make_corpus_from_paragraphs.py.

$ python make_corpus_from_cirrussearch.py \
--cirrus_file ~/data/wikipedia/cirrussearch/20211129/jawiki-20211129-cirrussearch-content.json.gz \
--output_file ~/work/wikipedia-utils/20211129/corpus-jawiki-20211129-cirrus.txt.gz \
--min_inlinks 10 \
--exclude_sexual_pages \
--mecab_option '-d /usr/local/lib/mecab/dic/ipadic-neologd-v0.0.7'

Make a passages file from extracted paragraphs

make_passages_from_paragraphs.py

This script takes a paragraphs file generated by extract_paragraphs_from_page_htmls.py and splits the paragraph texts into a collection of pieces of texts called passages (sections/paragraphs/sentences).

It is useful for creating texts of a reasonable length that can be handled by passage-retrieval systems such as DPR.

# Make single passage from one paragraph
# 8,672,661 passages
$ python make_passages_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/passages-para-jawiki-20211129.json.gz \
--passage_unit paragraph \
--passage_boundary section \
--max_passage_length 400

# Make single passage from consecutive sentences within a section
# 5,170,346 passages
$ python make_passages_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/passages-c400-jawiki-20211129.json.gz \
--passage_unit sentence \
--passage_boundary section \
--max_passage_length 400 \
--as_long_as_possible

Build Elasticsearch indices of Wikipedia passages/pages

Requirements

  • Elasticsearch 6.x with several plugins installed
# For running build_es_index_passages.py
$ ./bin/elasticsearch-plugin install analysis-kuromoji

# For running build_es_index_cirrussearch.py (Elasticsearch 6.5.4 is needed)
$ ./bin/elasticsearch-plugin install analysis-icu
$ ./bin/elasticsearch-plugin install org.wikimedia.search:extra:6.5.4

build_es_index_passages.py

This script builds an Elasticsearch index of passages generated by make_passages_from_paragraphs.

$ python build_es_index_passages.py \
--passages_file ~/work/wikipedia-utils/20211129/passages-para-jawiki-20211129.json.gz \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--index_name jawiki-20211129-para

$ python build_es_index_passages.py \
--passages_file ~/work/wikipedia-utils/20211129/passages-c400-jawiki-20211129.json.gz \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--index_name jawiki-20211129-c400

build_es_index_cirrussearch.py

This script builds an Elasticsearch index of Wikipedia pages using a Cirrussearch dump file. Cirrussearch dump files are originally for Elasticsearch bulk indexing, so this script simply takes the page information from the dump file to build an index.

$ python build_es_index_cirrussearch.py \
--cirrus_file ~/data/wikipedia/cirrussearch/20211129/jawiki-20211129-cirrussearch-content.json.gz \
--index_name jawiki-20211129-cirrus \
--language ja

License

The content of Wikipedia, which can be obtained with the codes in this repository, is licensed under the CC-BY-SA 3.0 and GFDL licenses.

The codes in this repository are licensed under the Apache License 2.0.

You might also like...
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Lingtrain Aligner — ML powered library for the accurate texts alignment.
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Augmenty is an augmentation library based on spaCy for augmenting texts.
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

This library is testing the ethics of language models by using natural adversarial texts.
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Text Classification in Turkish Texts with Bert
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

Releases(2022-04-04)
Owner
Masatoshi Suzuki
Masatoshi Suzuki
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Neelanjan Manna 1 Dec 22, 2021
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

liuhuanyong 357 Dec 24, 2022
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

(Bill) Yuchen Lin 2k Jan 01, 2023
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

186 Dec 29, 2022
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022