an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

Overview

revisiting-sepconv

This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two frames, it will make use of adaptive convolution [2] in a separable manner [3] to interpolate the intermediate frame. Should you be making use of our work, please cite our paper [1].

Paper

For the original SepConv, see: https://github.com/sniklaus/sepconv-slomo
For softmax splatting, please see: https://github.com/sniklaus/softmax-splatting

setup

The separable convolution layer is implemented in CUDA using CuPy, which is why CuPy is a required dependency. It can be installed using pip install cupy or alternatively using one of the provided binary packages as outlined in the CuPy repository.

If you plan to process videos, then please also make sure to have pip install moviepy installed.

usage

To run it on your own pair of frames, use the following command.

python run.py --model paper --one ./images/one.png --two ./images/two.png --out ./out.png

To run in on a video, use the following command.

python run.py --model paper --video ./videos/car-turn.mp4 --out ./out.mp4

For a quick benchmark using examples from the Middlebury benchmark for optical flow, run python benchmark.py. You can use it to easily verify that the provided implementation runs as expected.

video

Video

license

Please refer to the appropriate file within this repository.

references

[1]  @inproceedings{Niklaus_WACV_2021,
         author = {Simon Niklaus and Long Mai and Oliver Wang},
         title = {Revisiting Adaptive Convolutions for Video Frame Interpolation},
         booktitle = {IEEE Winter Conference on Applications of Computer Vision},
         year = {2021}
     }
[2]  @inproceedings{Niklaus_ICCV_2017,
         author = {Simon Niklaus and Long Mai and Feng Liu},
         title = {Video Frame Interpolation via Adaptive Separable Convolution},
         booktitle = {IEEE International Conference on Computer Vision},
         year = {2017}
     }
[3]  @inproceedings{Niklaus_CVPR_2017,
         author = {Simon Niklaus and Long Mai and Feng Liu},
         title = {Video Frame Interpolation via Adaptive Convolution},
         booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
         year = {2017}
     }
Owner
Simon Niklaus
Research Scientist at Adobe
Simon Niklaus
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
๐Ÿ’ก Type hints for Numpy

Type hints with dynamic checks for Numpy! (โ’) Installation pip install nptyping (โ’) Usage (โ’) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
This application is the basic of automated online-class-joiner(for YฤฑldฤฑzEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YฤฑldฤฑzEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022
[์ œ 13ํšŒ ํˆฌ๋น…์Šค ์ปจํผ๋Ÿฐ์Šค] OK Mugle! - ์žฅ๋ฅด๋ถ€ํ„ฐ ๋ฉœ๋กœ๋””๊นŒ์ง€, Content-based Music Recommendation

Ok Mugle! ๐ŸŽต ์žฅ๋ฅด๋ถ€ํ„ฐ ๋ฉœ๋กœ๋””๊นŒ์ง€, Content-based Music Recommendation 'Ok Mugle!'์€ ์ œ13ํšŒ ํˆฌ๋น…์Šค ์ปจํผ๋Ÿฐ์Šค(2022.01.15)์—์„œ ์ง„ํ–‰ํ•œ ์Œ์•… ์ถ”์ฒœ ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค. Description ๐Ÿ“– ๋ณธ ํ”„๋กœ์ ํŠธ์—์„œ๋Š” Kakao

SeongBeomLEE 5 Oct 09, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs ยป Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anฤฑl Gรผven 4 Mar 07, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022